Determination site of vitellogenin synthesis in freshwater crayfish

Cherax quadricarinatus at different maturation stages females

Vania Serrano-Pinto, María Guadalupe Carrisoza-Valenzuela & Martín Ramírez-Orozco
Programa de Acuacultura, Centro de Investigaciones Biológicas del Noroeste (CIBNOR)
Mar Bermejo 195, Col. Playa Palo Santa Rita, La Paz, B.C.S. 23090, México

ABSTRACT. The objective of this study was to determine the site of vitellogenin (Vg) synthesis at different stages of female maturation of freshwater crayfish *Cherax quadricarinatus*. PCR products of 1,100 bp and 900 bp were generated from genomic DNA in the first case, and hepatopancreas and ovary cDNAs in the second case. Results from RT-PCR analyses showed that the mRNA encoding the 3’ end of the Vg cDNA was present in the hepatopancreas from secondary-vitellogenesis at first maturation, previously spawner and ovigerous females. The Vg mRNA was present simultaneously in the ovary from secondary-vitellogenesis at first maturation only, but was not detected at previously spawning and ovigerous females. This study provided evidence that the ovary plays a significant role in the production of this major egg yolk protein, but only in some stage of the vitellogenesis cycle.

Key words: *Cherax quadricarinatus*, crayfish, mRNA expression, vitellogenin synthesis, vitellogenesis.

INTRODUCTION

Yolk proteins are the most important sources of nutrients for development of oocytes and developing embryo of oviparous animals, including crustaceans. Vitellogenin (Vg) is the precursor of vitellin (Vt) and the main component of yolk proteins (Charniaux-Cotton, 1985). The lipo-glyco-proteinic moiety reserve will be transferred to the eggs and larvae to allow their well development (Serrano-Pinto *et al.*, 2003).

Among researchers concerned with marine invertebrate species, a controversy exists on the site of vitellogenesis. Advance in biomolecular analysis has led to a determination of Vg mRNA expression in crustaceans. In marine species, exogenous Vg
synthesis in the hepatopancreas of *Penaeus monodon* has been proposed (Tseng *et al.*, 2001), of *Metapenaeus ensis* (Kung *et al.*, 2004), of *Pandalus hypsinotus* (Tsutsui *et al.*, 2004), while endogenous ovarian Vg synthesis has been found in the fiddler crab *Uca pugilator* (Eastman-Reks & Fingerman, 1985); in penaeid shrimps (Yano & Chinzei, 1987; Rankin *et al.*, 1989), and in *Callinectes sapidus* (Lee & Watson, 1995). In other penaeid shrimp species the mRNA encoding Vg has been found in both the ovary and the hepatopancreas tissues (Fainzilber *et al.*, 1992; Khayat *et al.*, 1994; Tsutsui *et al.*, 2000, Tsang *et al.*, 2003).

In freshwater species the hepatopancreas seems to be the site of synthesis of Vg in *Macrobrachium resenbergii* (Lee & Chang, 1997; Chen *et al.*, 1999; Soroka *et al.*, 2000; Yang *et al.*, 2000; Jayasankar *et al.*, 2002; Okuno *et al.*, 2002, Jasmani *et al.*, 2004); in *M. nipponense* (Han *et al.*, 1994) and in freshwater crayfish *Cherax quadricarinatus* (Abdu *et al.*, 2002).

In this way, the objective of the present study was to determine the site(s) of mRNA expression of Vg in the freshwater crayfish at different stages of female maturation based on RT-PCR analyses.

MATERIALS AND METHODS

Sampling

Freshwater crayfish *Cherax quadricarinatus* were obtained from the laboratory facilities of CIBNOR and maintained at the facilities according to procedures described in Hutchings & Villarreal (1996).

DNA extraction

Genomic DNA of muscle tissue from tail at secondary vitellogenesis, previous spawned, and ovigerous females was extracted by a phenol/chloroform procedure, followed by ethanol precipitation, as described by Sambrook *et al.* (1989). The different developmental stages of the ovaries were determined following the classification of Sagi *et al.* (1996).

RNA extraction and cDNA synthesis

Total RNA from the ovary and hepatopancreas at secondary vitellogenesis at first maturation, previously spawned, and ovigerous females were extracted with the Trizol reagent (Gibco BRL, Life Technology, USA) according to the instructions of the manufacturer, followed by treatment with DNAase I. Total RNA (30 µg) from each tissue were used. Reverse transcription was performed using an Omniscript RT Random Primer Kit (QIAGEN S.A., France).

PCR amplification

Oligonucleotide primers were designed from the 3’ end region of the Vg cDNA, based on the sequence reported recently by Abdu *et al.* (2002) (AF306784). Amplification was primed by a pair of oligonucleotides (VgF-5’ GTG CGT CGC CTA CTG GAA CA 3’ and VgR-5’ CTT GGC GGA ATA CTC GGA CTG 3’). PCR conditions were as follows: denaturing at 94ºC for 2 min, and 35 cycles at 94ºC for 1 min, 45ºC for 1 min, and 72ºC for 4 min. A final elongation step was performed at 72ºC for 10 min. PCR reactions were carried out with *Pfu* DNA polymerase (Promega USA), and using 500 ng of template genomic DNA, 20 nmol dNTP, 25 pmol of each primer, and a buffer supplemented with 5% dimethyl sulphoxide (DMSO). PCR products were resolved by electrophoresis on a 1% agarose gel. A 10,000 bp DNA marker (Eurogentec, EGT Group, France) was simultaneously electrophoresed.

cDNA cloning

PCR fragments were purified and cloned into a pGEM-T Easy Vector System (Promega, USA), to transform *Escherichia coli* (strain XLI-Blue), using standard methods (Sambrook *et al.*, 1989). Clones containing the PCR inserts were digested with the appropriate restriction enzyme (Eco RI) (Promega, USA) and separated on 0.8% low melting point agarose gel (FMC, USA; Sea Plaque GTG agarose).

RESULTS

A PCR product of 1,100 bp from genomic DNA (Fig. 1) corresponding to the 3’ end of the vitellogenin (Vg) gene was amplified. Figure 2 shows the schematic view of the Vg cDNA encoding the 3’ end region of *C. quadricarinatus* Vg hepatopancreas cDNA used in this study.

RT-PCR analysis showed that the mRNA encoding the 3’ end of the vitellogenin gene was...
Figure 1. Electrophoregram of the 1,100 bp PCR product from genomic DNA. a) DNA marker (200-10,000 bp) (Eurogentec, EGT Group, France) in a 1% agarose gel in Tris-acetate (TAE) buffer. b) The PCR product corresponds to the 3’ end of the full-length vitellogenin cDNA of *Cherax quadricarinatus*.

Figura 1. Electroforegrama de producto de PCR de 1.100 pb a partir de ADN genómico. a) Marcador de ADN (200-10.000S pb) (Eurogentec, EGT Group, France) en gel de agarosa al 1% en amortiguador Tris-acetato (TAE). b) El producto de PCR corresponde al extremo 3’ del ADNc del gen de la Vg de *Cherax quadricarinatus*.

Figure 2. Schematic view of *Cherax quadricarinatus* vitellogenin (Vg) hepatopancreas cDNA (AF306784) (open bar). The solid bar represents the Vg cDNA encoding the 3’ end region used in this study.

Figura 2. Vista esquemática del ADNc de hepatopáncreas del gen de la vitelogenina (Vg) de *Cherax quadricarinatus* (AF306784) (barra clara). La barra oscura representa al ADNc del extremo 3’ utilizado en este estudio.

We detected accumulation of Vg mRNA simultaneously in hepatopancreas and ovary tissues during secondary vitellogenesis of first maturation females, based on RT-PCR analyses. The hepatopancreas Vg mRNA was expressed in secondary vitellogenesis of first maturation, previously spawned, and ovigerous females. The vitellogenin was expressed in ovary tissue in secondary vitellogenesis of first maturation females, but it was not detected in previously spawned and ovigerous females. These results are consistent with previous research showing a complete immunological identity of the hepatopancreas and hemolymph vitellogenin and the egg and ovarian vitellins (Serrano-Pinto *et al.*, 2003).

Other investigators reported different levels of mRNA encoding vitellogenin expression in both tissues. Tsutsui *et al.* (2000) found Vg mRNA synthesized simultaneously in hepatopancreas and ovarian tissues of vitellogenic *Penaeus japonicus*

DISCUSSION

mRNA represents the site of expression of the yolk precursor gene, and it is the most reliable criterion for defining the site of Vg synthesis. In crustaceans, Vg is synthesized in multiple organs, depending on species and stage of molting or vitellogenesis (Tsutsui *et al.*, 2000; Abdu *et al.*, 2002; Avarre *et al.*, 2003; Tsang *et al.*, 2003).
females related to ovarian maturation. They found high mRNA levels in the hepatopancreas during the early and late exogenous vitellogenic stages, but the highest mRNA levels during the early exogenous vitellogenic stage occurred in the ovary. Thereafter, levels rapidly declined. Avarre et al. (2003) showed that hepatopancreas and ovarian tissues are involved in the expression of Vg mRNA in P. semisulcatus. The Vg from the hepatopancreas is released into the hemolymph and remains in this form, but the Vg in ovary undergoes second cleavage, which probably occurs with a certain delay during ovarian maturation.

The discrepancies between the results obtained in this study and the results obtained by Abdu et al. (2002) working with the same species, are probably related to the female maturation stages.

CONCLUSIONS

This study demonstrated that mRNA encoding the 3' end of the Vg cDNA was present in the hepatopancreas from secondary vitellogenesis in females at first maturation, previously spawned, and ovigerous. Vg mRNA was present simultaneously in the ovary from females at secondary vitellogenesis at first maturation, but it was not detected at previously spawned and ovigerous females. With these result, we provide evidence that the ovary plays a significant role in the production of this major egg yolk protein, but only in some stages of the vitellogenesis cycle.

ACKNOWLEDGEMENTS

This study was supported by the National Research Council of Mexico (CONACYT Grant 2888B awarded to Dr. Humberto Villarreal) and the Laboratoire de Pathologie Comparée, INRA-CNRS-Université Montpellier II, UMR 5087, 30380 Saint-Christol-les-Alés, France. We thank Mylene Ogliastro, Celia Vázquez and Jesús N. Gutiérrez for technical support. The editor at CIBNOR improved the English text.

REFERENCES

Vitellogenin synthesis of Cherax quadricarinatus

Recibido: 25 julio 2005; Aceptado: 30 octubre 2005