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ABSTRACT. The Easter submarine alignment corresponds to a sequence of seamounts and oceanic islands 

which runs from the Ahu-Umu volcanic fields in the west to its intersection with the Nazca Ridge in the east, 
with a total length of about 2.900 km and a strike of N85°E. Recent bathymetric compilations that include 

combined satellite derived and shipboard data (Global Topography) and multibeam bathymetric data (from 
NGDC-NOAA) are interpreted both qualitatively and quantitatively by using a morphological analysis, which 

was comprised of the determination of bathymetric patterns, trends in lineations and structures; height 
measurements, computation of basal areas and volumes of seamounts, in order to establish clues on the origin 

of this seamount chain and to establish relationships with the regional tectonics. In the study region 514 
seamounts were counted, of which 334 had a basal area less than the reference seamount (Moai). In general, the 

largest seamounts (>1000 m in height) tend to align and to have a larger volume, with an elongation of their 
bases along the seamount chain. On the other hand, smaller seamounts tend to be distributed more randomly 

with more circular bases. As a consequence of the morphological analysis, the best possible mechanism that 
explains the origin of the seamount chain is the existence of a localized hotspot to the west of the Salas y Gómez 

Island. The corresponding plume would contribute additional magmatic material towards the East Pacific Rise 
through canalizations, whose secondary branches would feed intermediate volcanoes. It is possible that within 

the Easter Island region there would be another minor contribution through fractures in the crust, due to the 
crustal weakening that was produced by the Easter Fracture Zone. 

Keywords: seamounts, hotspot, bathymetry, morphology, Easter Island, Salas y Gómez Island. 

 

Origen del Alineamiento Submarino de Pascua: morfología y lineamientos estructurales 
 

RESUMEN. El alineamiento submarino de Pascua es un cordón de montes submarinos e islas que comprende, 

por el W, desde los campos volcánicos Ahu-Umu y, hasta el E, su intersección con la elevación de Nazca, con 
una extensión total de ca. 2900 km y un rumbo de ~N85°E. Compilaciones recientes de batimetría que incluyen 

datos derivados de satélites y obtenidos por buques (Global Topography) y datos batimétricos de ecosondas 
multihaz (NGDC-NOAA), se interpretaron cualitativa y cuantitativamente mediante análisis morfológico que 

consistió en la determinación de patrones batimétricos; tendencias de los lineamientos y estructuras; mediciones 
de alturas, áreas basales y cálculo de volúmenes de montes submarinos; para establecer indicios sobre el origen 

del alineamiento y asociaciones con la tectónica regional. Se contabilizaron 514 montes submarinos en la región 
de estudio, de los cuales 334 tuvieron un área basal menor que el monte de referencia (Moai). En general, los 

montes más grandes (>1000 m de altura) tienden a alinearse y a tener un mayor volumen, con un alargamiento 
de sus bases en el sentido de la tendencia, en cambio los menores, tienden a distribuirse más aleatoriamente, 

siendo sus bases más redondeadas. Como consecuencia del análisis morfológico, el mejor mecanismo que 
explicaría el origen de las cadenas volcánicas, sería por la existencia de un punto caliente localizado al W de la 

isla Salas y Gómez. Esta pluma también aportaría material magmático adicional hacia la dorsal del Pacífico 
oriental a través de canalizaciones, cuyas ramas secundarias alimentarían volcanes intermedios. Es posible que 

en el área de la Isla de Pascua exista otro aporte menor por fracturas de la corteza dado el debilitamiento cortical 
que produjo la Zona de Fractura de Pascua.   

Palabras clave: montes submarinos, punto caliente, batimetría, morfología, Isla de Pascua, Isla Salas y Gómez. 
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INTRODUCTION 

The Easter Island and Salas y Gómez Island form a part 

of the chain of seamounts or volcanoes (González-

Ferrán, 1987, 1994), known as “Easter-Salas y Gómez 

Seamount Chain” (e.g., Kingsley & Schilling, 1998; 

Simons et al., 2002), “Easter Seamount Chain” (Naar 

et al., 1993; Rappaport et al., 1997), “Easter Ridge” o 

“Salas y Gómez Ridge” (Clark & Dymond, 1977), or 

“Easter Island Fracture Zone” (Menard, 1964), among 
other names. 

This chain extends over 2900 km from Easter Island 

up to its joining point with the Nazca Ridge (Fig. 1) and 

is formed by large seamounts, which can reach heights 

of more than 3000 m above the adjacent seafloor. This 

chain crosses the East Pacific Rise at about 27°S 

(González-Ferrán, 1994). The average width of this 

seamount chain is about 200 km. The trend along a W-

E line over the Nazca Plate has caused this topographic 

feature to be called “Alineamiento Submarino de 

Pascua” (Easter Submarine Alignment; Morales, 1984; 

Morales & Rodrigo, 1993-1994). This name will be 

used in the present work. 

Rodrigo (1994) determined that the distribution of 

the different types of seamounts, according to their 

morphology and height, is irregular, in spite of their 

general linear distribution, showing the complex origin 

of this alignment. According to their dimensions, this is 

classified as a first order structure when considering the 

Southern Pacific Ocean basin and as a second order 

structure when considering all the world ocean basins 

(Lugo, 1986). It has been speculated that this alignment 

could extend farther to the east of the San Félix Island 

and San Ambrosio Island, and could even continue 

beneath the South American continent, and also more 

to the west, beyond the Pitcairn Islands (Bonatti et al., 
1977). 

The geologic and geodynamic processes of the 

lithosphere can leave traces on the seafloor. For 

example, the analysis of the distribution and shapes of 

the structures generated by these processes can give 

clues on the tectonic evolution and the processes of 

formation of topographic features. The region of Easter 

Island and Salas y Gómez Island is characterized by the 

proximity of: 1) East Pacific Rise, 2) Easter Microplate, 

3) Easter Fracture Zone, and 4) seamount chain. 

Moreover, tectonic processes have occurred and continue 

to occur in the area, such as plate reorganizations, 

jumps in ridge activity and propagating rifts segments, 

which result in a complex submarine geomorphology 

(Rodrigo, 2000). Therefore, in this work we utilize 

public databases and bathymetric background informa-

tion to derive topographic patterns, which in turn permit 

us to establish clues on the origin of the Easter 

Submarine Alignment and relationships with the 

regional tectonics, focusing approximately in the region 
of the Chilean Economic Exclusive Zone. 

Regional tectonic setting 

In study region, the Nazca, Easter and Pacific plates 
converge against each other. The Easter Island and 

Salas y Gómez Islands are located on the Nazca Plate 
(Fig. 1). The SE border of the Easter Microplate 

(eastern rift) is in the NW sector of this region (Hey et 
al., 1985: Naar & Hey, 1991); to the SW and as 
continuation of the eastern rift, are segments of the East 

Pacific Rise (EPR), which are connected to the eastern 
rift of the Juan Fernandez Microplate (Fig. 4) (Searle 

1989; Searle et al., 1993). In this sector the oceanic 
crust spreads at rate of 149 km Myr-1 (Martínez et al., 

1997). The average spreading rate between the Pacific 

and Nazca plates is close to 150 km Myr-1 (Naar & Hey, 
1986; Hey et al, 1995); and at latitude 28.5°S it is of 

180 km Myr-1 according to Schilling et al. (1985). 
Therefore this region has the highest rate of crust 

formation in the Pacific Basin (Rappaport et al., 1997; 

Hey et al., 2004). 

In this region, the complex dynamic effects 
modified the morphology of a typical mid-ocean ridge 

2 Myr ago and generated overlapped ridge segments of 
various sizes which produce a tendency to rotate the 

oceanic crust, which finally influenced to the formation 

of the Easter Microplate and the disappearance of the 
transform fault that joined the original ridge segments 

(Naar & Hey, 1991; Hey et al., 1995). The microplates 
play an important role in the reorganizations of the 

largest plates. The microplates along the mid-ocean 
ridges have existed for several millions years while the 

spreading center relocates in a new position because of 

a large-scale jump of the ridge axis (Naar, 1992). 
Therefore, the borders of the Easter Microplate are 

composed of several segments of propagating rifts, 
transform faults, fracture zones and other structures 

(Hey et al., 1985).  The interaction of the propagating 

rifts, i.e., the ridges in which part of their magmatic flux 
is propagating towards the axis of the ridge axis, forms 

“V”-shape structures (pseudofaults) over the ocean 
floor (Hey, 1977). The existence of these pseudofaults 

has been demonstrated by magnetic studies in the 
region of the Easter Microplate (Naar & Hey, 1986). 

The pseudofaults show the lithosphere envelope 

formed by the axis of the propagating rift and how the 
spreading rate decreases. These pseudofaults are 

similar to the fossil traces of the overlapped spreading 
centers (OSC), except that the former leave a 

morphologic and magnetic pattern, where the tip of the 
propagating axis is steered towards the oldest 
lithosphere, forming the already mentioned “V” shape 

(Hey, 1977; Naar, 1992).
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Figure 1. Map of the topography of the southeastern Pacific created using the Global Topography 15.1 database.  Plates 

and microplates, mid-ocean ridges, aseismic ridges and seamount chains are indicated. The study area is indicated by the 

dotted. There are also shown San Félix Island (SF), San Ambrosio Island (SA), Alejandro Selkirk Island (ASI), Robinson 

Crusoe Island (RCI), Easter Island (EI) and Salas y Gómez Island (S y GI). 

 

 

Macdonald (1989) explains that the formation of the 

observed segment for the EPR follows the empla-

cement of magmatic chambers spaced and shallow, 

with a discrete distribution along the axis. In the case of 

the region close to the study area, this is located to the 

south (between 28.5° and 30°S) and the EPR is 

separated into large segments (Hey et al., 2004). These 

segments propagate in the same way as the segments of 

the Easter Microplate and form an OSC separated by 

120 km. This system is characterized by being 

tectonically unstable and by its continuous spreading 

that causes the topographic high associated with the 

segment that is displaced from the magma supplying 

area, remaining abandoned from this type of activity 

(fossil). After, new topographic highs are built 

(segments) in the location of the magmatic activity 
(Macdonald, 1989; Martínez et al., 1997). 

Origin of the Easter Submarine Alignment 

The explanation for the formation of the islands and the 

seamount chain that extends towards Chile along the 
Nazca Plate is still under debate. Several mechanisms 

have been suggested for the formation of the Easter 

alignment. 

Morgan (1972) proposed that the Easter Seamount 

Chain was formed by a fixed hotspot relative to the 

mantle. Pilger & Handschumacher (1981) tried to 

develop a simple hotspot model for the Nazca Ridge 

and the Easter Seamount Chain, localizing the hotspot 

over the western rift of the Easter Microplate. However, 

serious kinematic problems occurred when their model 

was adjusted to a unified model. Therefore, Pilger & 

Handschumacher (1981) built an alternative model, 

resulting in a better fit for the Nazca Ridge, localizing 

the hotspot directly to the east of Salas y Gómez Island. 

Okal & Cazenave (1985) also located the hotspot of the 

Salas y Gómez Island based on magnetic anomalies 
data. 

Modern geochemical data obtained at the East 

Pacific Rise, Easter Island, Salas y Gómez Island and 

at other points of the chain also indicate that the hotspot 

could be located close to Salas y Gómez Island, 

potentially with a channelized flux towards the Easter 

Microplate Rift (Kingsley & Schilling, 1998; Kingsley 

et al., 2002; Hall & Kincaid, 2004). Recently, Ray 
(2012) confirmed that the hotspot could be in the sector 

of Salas y Gómez Island by using a geochemical and 

geochronological study of lavas obtained at various 
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points along the chain, including the Nazca Ridge. The 

latter does not coincide with what has been argued by 

some investigators, who claim that the hotspot would 

be beneath Easter Island or the Ahu Volcanic Field (200 

km westwards from Easter Island) (e.g., Hagen et al., 
1990; Haase & Devey, 1996) or others who claim that 

it should be beneath the Southern East Pacific Rise 
(e.g., Clouard & Boneville, 2001). 

Given that volcanism found along the Easter 

Seamount Chain is anomalously young, another 

formation mechanism is assumed to exist. One 

hypothesis is the “hotline” from Bonatti et al. (1977), 

who adopted the theory of Richter (1973) of double 

convection of the mantle, and suggested that the chain 

was been created by the upwelling of part of the 

magmas brought by these convective cells transverse to 

the plate movement. Another old hypothesis, which 

was also previously explained, is the “leaking fracture 

zone” or canalizations (Menard & Atwater, 1968; 
Herron, 1972; Clark & Dymond, 1977). 

Due to advances in the processing and resolution of 

satellite altimetry and the discovery of the linearity of 

gravimetric anomalies, other hypothesis have been 

postulated, such as the “linear zones of lithospheric 

spreading” (Mammerickx & Sandwell, 1986; Sandwell 

et al., 1995), which could result in the incipient plate 

separation; however, given the lack of seismic records, 

the existence of normal faults have not been proven, 

which could, in turn, give some evidence for this 

hypothesis. 

MATERIALS AND METHODS 

Bathymetric data 

Before utilizing any bathymetry database, we compared 

among them in order to find the best one for both 

resolution and data quality. For this purpose public data 

from several sources were used. The first database 

consisted of original bathymetry measured with single-

beam or multibeam echosounders. These data were 

obtained from the U.S. National Geophysical Data 

Center (NGDC) website, which is part of the National 

Oceanic and Atmospheric Administration (NOAA). A 

filter was applied to these data in order to remove every 

unreal value (outside the range 0 m to 7000 m). Also, 

the multibeam data were averaged every 5 pings and 

data was not considered if the vessel speed was less 

than 2 knots. With these data, a bathymetric grid was 

built with a cell size of 15”x15” of arc. This grid was 

built using the software GMT and the interpolation 
algorithm called “continuous curvature splines in 

tension” (Smith & Wessel, 1990). Figure 2 shows the 

bathymetric coverage of these data. 

The second type of database considered corres-

ponded to global grids generated already by various 

institutions. The objective of this stage was to use data 

that could complement or fill the gaps in the 

bathymetric grid obtained from shipboard data, and 

also to have a lower resolution grid and of smaller 

digital size for a more efficient manipulation and for the 

creation of bathymetric maps with smoother contours. 

These grids were obtained from NOAA-NGDC and 

from the Satellite Geodesy group of the Scripps 

Institution of Oceanography of the University of 

California San Diego. For the comparison, the 

following grids were considered: ETOPO1 (Amante & 

Eakins, 2009), Global Topography v15.1-2012 (Smith 

& Sandwell, 1997), SRTM30 Plus v8-2012 (Becker et 
al., 2009). After the comparison, it was observed that 

all these grids have almost the same data for the 

seafloor, which include: singlebeam and multibeam 

bathymetry and bathymetry derived from satellite 

altimetry measurements. However, the SRTM30 Plus 

grid had the best resolution (30”x30” of arc or about 

0.9x0.9 km) and thus it was the one utilized for the 

analysis. Finally the grid computed from shipboard data 

(single beam and multibeam) was superimposed on top 
of the SRTM30 Plus grid. 

Analysis of bathymetric data 

The analysis of the data was based on the identification 

of topographic lineations, structures and seamounts, 

and measurements of basal area and heights were made, 

complementing and updating the work carried out by 

Rodrigo (1994, 2000) and Rappaport et al. (1997). The 

seamount database Seamount Biogeosciences Network 
(http://earthref.org/SC/) was also used. 

The methodology employed for the determination 

of the dimensions and shapes of the seamounts was 

based on Rappaport et al. (1997). These authors 

considered seamounts with heights greater than 200 m. 

The reason for this criterion is that they acquired 

bathymetry from the GLORI-B side-scan sonar, which 

had good lateral coverage, but with less spatial 

resolution than multibeam bathymetry. Therefore only 

seamounts with heights greater than 200 m were 

considered. In our case, where we have used satellite-

derived bathymetry, the resolution is lower than for the 

multibeam bathymetry. Using visual comparison, 

seamounts with heights greater than 500 m were well 

determined. However, for the morphologic analysis, 

only seamounts with height greater than 1000 m were 

considered, using the Moai seamount as a reference, 

because of its representative size and shape. That is, 
seamounts with basal areas larger than that of Moai 

were classified as “large seamounts” and seamounts 
with basal areas less than that of Moai were classified 

http://earthref.org/SC/
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Figure 2. Bathymetric map of the original single beam and multibeam bathymetry data downloaded from the NGDC-

NOAA website. These data fail to completely cover the study area. 

 

 

as “small seamounts”. A description of small seamounts 
can be found in Rappaport et al. (1997).  

In general, the identification of seamounts and 

structures and their measurements were carried out by 

inspection of the topographic maps and a 3D model, 

visualized with the software iView4D (www.qps.nl). 

The determination of the base of the seamounts was 

accomplished by finding the change in slope at the foot 

of seamounts, considering an average level for the 

adjacent depths, given the roughness of the seafloor and 

of the seamounts. To compute volume it was assumed 
that the seamounts were perfectly conic. 

RESULTS 

Bathymetry and topographic alignments of the 
region 

In general, the study region can be divided into three 

bathymetric trends: a central sector in a E-W direction 

with large variability in the bathymetry caused by the 

presence of a chain of islands and seamounts; a 
northern sector, which has a gentle slope from S to N, 

starting at the northern flank of the chain at 3500 m 

depth; and a western sector, where the East Pacific Rise 

and the eastern rifts of the Easter Microplate dominate, 

and where the ridge segments have typical depths of 

less than 2500 m (Fig. 3). In the study area depths 

between 2950 and 3700 m prevail (Fig. 4). Taking into 

account the height of the islands, the mean depth of the 

region is 3239 m, with a standard deviation of 458 m. 

The Easter Submarine Alignment has a general 
strike of N85°E (Fig. 5), but two different strikes can 
be identified if the alignments of the largest seamounts 
are considered: (1) from the volcanic fields of Ahu and 
Umu (Hagen et al., 1990) up to longitude 107.5°W, 
with a strike of N105°E; and (2), from longitude 107°W 
towards the E, with a strike of N85°E (Fig. 5), which 
has a similar strike to the Juan Fernández Ridge 
(Rodrigo & Lara, 2014). There are other topographic 
alignments with important structures, but these have a 

strike rather NW-SE and others almost N-S (Fig. 5). 

The linear trend of the volcanic fields of Ahu and 
Umu with Easter Island have a similar strike to that of 
the Easter Fracture Zone (Easter FZ, Fig. 5) or SOEST 
(Hey et al., 1995), including other parallel topographic 
alignments. From Figure 5 it is also possible to identify 
V-shaped  pseudofaults (e.g., Naar & Hey, 1986; Hey 
et al., 1995), which have their bases at 27°S, and ridge 

segments, including the spreading overlapping centers 

http://www.qps.nl/
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Figure 3. Bathymetric map of the study area resulting from the compilation of data derived from satellite data and single 

beam and multibeam echo sounder measurements. Bathymetric contours every 500 m. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Histogram of absolute frequency of the bathymetry 

of the study area. The distribution is mostly concentrated at 

depths between 2950 m and 3700 m. 

 

of the seafloor (OSC) (e.g., Naar & Hey, 1986; 
Martínez et al., 1997; Baker et al., 2002; Hey et al., 

2004). Other minor linear trends can be identified 
through the use of multibeam bathymetry. These 
topographic alignments are approximately parallel to 
the ridge segments and to the pseudofaults, showing 
that their origin took place at the axis of the mid-ocean 
ridge (Fig. 5). 

The bases of the seamounts are joined at depths 
between approximately 2900 and 3000 m (Figs. 3, 5). 
These bases are elongated and narrow, but continuous, 
with an average diameter of about 37 km. At depths less 
than 2800 m the continuity between Easter Island and 
the longitude ~108°W disappears, but to the East 
(towards Salas y Gómez Island) it remains.  

Seamounts of the Easter Island group 

The highest point of the study area is defined by Easter 
Island, which reaches over 400 m above sea level. To the 
west of the island there is the Moai Seamount, which 
reaches a height over 2000 m above the 3000 m sea floor 
depth level, as was described before (Fig. 3). A 
prolongation of its base is observed towards the NW until 
it reaches another seamount of similar charac-teristics, but 
with a larger base. This is the Pukao Seamount (Hagen et 
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Figure 5. Map of lineaments of the study area (updated from Rodrigo, 2000). Ridge segments are thick solid lines; high 

elevations are solid lines of intermediate thickness; lower elevations or roughness of the seafloor are thin solid lines; 

depressions are dotted lines; pseudofaults are long dashed lines; and chain trends are segmented lines short and wide. 

Continuous base of the chains is also shown considering the 2900-3000 m isobath depth. 

 
 
al., 1990). With a similar tendency in the strike of the 
former elevations, there is the Ahu-Umu Volcanic Field 
(Figs. 3, 5). This extends over almost 130 km towards 
the west from Easter Island and covers approximately 
2500 km2. It is built up of numerous and small volcanic 
cones (Hagen et al., 1990), which are not possible to 
distinguished with the available data. This group of 
seamounts has been called the Rapa Nui Alignment 
(Fig. 3). 

Easter Island also shows two prolongations towards 
the SE and SW, which form a chain of elevations with 
heights less than that of the Moai Seamount. These 
elevations, such as the southeast and Rano Kau, have 
been identified by Hagen et al. (1990). More to the 
south of Easter Island there are other seamounts with 
similar characteristics to the Moai and Pukao 
seamounts. The largest one is located at approximately 
27.78°S and 110.6°W. It has a basal diameter of almost 
30 km with an E-W direction. In its SE part there is a 
prolongation of its base, forming a smaller elongated 
elevation, with a similar morphology and orientation as 
the ones described for the Moai and Pukao seamounts 
and for the Ahu Volcanic Field. To the south of the 
Umu Volcanic Field it is possible to identify the Easter 
Fracture Zone that runs from the point 27.9°S, 108°W 
until the point 27.3°S, 111.6°W (Figs. 3, 5). 

Morphology and distribution of the seamounts in 

the region 

Considering area B in Figure 6, 514 seamounts were 

counted (including the islands). Area A is the one 

analyzed by Rappaport et al. (1997). Using the Moai 

Seamount as a reference, there are 36 seamounts with a 

larger basal area, and 334 seamounts with a smaller 

basal area; so that for the study region the seamounts 

with smaller basal area dominate. From Figure 6 one 

can see that the large seamounts are those that form 

principal alignments and the smaller seamounts are 

more dispersed or have linear tendencies with different 
orientations. 

Taking into account only the seamounts that form 

the largest E-W alignments (seamounts numbered in 

Fig. 6), one can distinguish that the bases tend to be 

more circular, but at the same time they tend to be more 

elongated in an E-W direction. In effect, between the 

longitudes 108° and 103°W, in the sector of Salas y 

Gómez Island, the largest seamounts have a tendency 

for an E-W elongation (Fig. 5), but towards the E, they 

tend to elongate individually with a N-S strike. The 

topographic NW-SE trends identified in the former 

section that come out of the main alignment are also 
relevant for seamount elongation along this direction. 
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Figure 6. Basal areas of seamounts. The area "A" corresponds to that analyzed by Rappaport et al. (1997) and "B" for this 

work. Magnetic chrona (large bold numbers) are indicated. Rock sampling points (black circles) with their ages (small 

numbers) are also shown according the compilation of Naar et al. (2002). 

 

 

On the other hand, in the sector around Easter Island, 

the seamounts tend to be elongated until 108.5°W, with 

the same strike of Easter Fracture Zone (Figs. 5-6). 

Between the two areas described, the shapes of the 

seamounts tend to elongate with a strike NE-SW, 

similar to small elevations that come out from the Rapa 

Nui alignment and show this same trend (such as the 

Easter Southeast elevation). By contrast the smaller 

seamounts outside area B of Figure 6 are more circular 

and isolated, not following a clear pattern in their 
spatial distribution. 

In order to find a relationship between height, basal 

area and volume, 36 seamounts (and islands) were 

analyzed (Table 1), finding an average height of 2142 

m, a minimum height of 1126 m and maximum height 

of 3434 m. The average value of the heights agrees with 

the value showed by Gálvez-Larach (2009) for the 

seamounts considered by him in the total extension of 

the chain. For basal area, the average was 1070 km2, 

with a minimum of 500 km2 and a maximum of 2180 

km2. The average volume was 817 km3, the minimum 

was 258 km3 and the maximum was 2370 km3. In 
general, heights between 1000 and 1500 m, and also 

between 2500 and 3000 m dominate, with almost the 

same number in each case. Only four seamounts (taking 

into account the islands) have heights over 3000 m. At 

the same time, these ones have the largest basal areas 

and volumes (Figs. 7-8). Moreover, the lowest sea-

mounts (<~2300 m) tend to have similar basal areas and 

volumes. These tend to be dome shaped. On the other 

hand, for seamounts with heights larger than about 

2300 m, the taller their heights, the larger their basal 

area and volume, giving them a shape closer to a cone, 
but being elongated laterally. 

Figure 6 also shows the magnetic isochrones 

obtained by Rappaport et al. (1997). Moreover, ages 

have been added that were obtained from samples from 

various cruises and other sources, compiled by Naar 

(2002). The samples were obtained from large and 

medium size seamounts. Neither correlation is observed 

between the ages and the sizes of the seamounts, nor with 

the location and arrangement. In general, these are 

younger ages than the surrounding crust generated by 

seafloor spreading. For instance, the 3a isochrone 

corresponds to an age of ~5.8 Myr, but the adjacent 

seamounts have an age between 2.9 and 0.2 Myr. Easter 

Island seems to be the oldest site, not having the age 
progression as the trend that Rapa Nui Chain has. In 

effect, the seamounts located to the SE of Easter Island 

are younger. 
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Table 1. Results of morphometric measurements of the considered seamounts. 

 

Assigned number to  
the seamount 

Coordinates  
of the seamount top 

Top depth 
(m) 

Base depth 
(m) 

Heigh 
(m) 

Basal area 
(km²) 

Volume 
(km3) 

1 (Ahu) 26°37.02'S, 111°09.12'W 1652 2850 1198 1101 439.7 

2* (Umu) 26°37.81'S, 111°00.58'W 1250 2745 1495 1402 698.7 

3 28°40.72'S, 111°10.56'W 1433 3100 1667 948 526.8 

4 (Pukao) 26°54.25'S, 110°15.61'W 261 3100 2839 2001 1893.6 

5* (Tupa) 27°44.06'S, 110°35.71'W 920 2760 1840 915 561.2 

6* 27°49.92'S, 110°08.24'W 1480 2760 1280 796 339.6 

7 28°14.89'S, 110°44.64'W 1641 3000 1359 570 258.2 

8 (Moai) 27°05.99'S, 109°41.77'W 623 3015 2392 500 398.7 

9 (Easter Island) 27°05.29'S, 109°22.57'W -434 3000 3434 2071 2370.6 

10 27°59.66'S, 109°10.12'W 1606 3000 1394 710 329.9 

11* 27°27.42'S, 108°10.79'W 1665 3020 1355 720 325.2 

12 26°35.28'S, 107°14.84'W 1680 3250 1570 2084 1090.6 

13 26°19.89'S, 106°31.97'W 228 3450 3222 2180 2341.3 

14 27°05.53'S, 106°24.01'W 553 3225 2672 1547 1377.9 

15* 26°26.61'S, 105°53.54'W 455 2870 2415 1566 1260.6 

16* 26°39.97'S, 106°14.13'W 215 2475 2260 627 472.3 

17* 26°45.74'S, 105°55.06'W 1080 2910 1830 620 378.2 

18 26°24.72'S, 105°33.86'W 518 3150 2632 1006 882.6 

19 25°57.84'S, 105°39.59'W 2174 3300 1126 701 263.1 

20 (Salas y Gómez I.) 26°27.57'S, 105°22.07'W -42 3135 3177 1828 1935.9 

21 27°14.88'S, 105°28.49'W 1932 3100 1168 775 301.7 

22* 27°33.04'S, 105°23.13'W 1180 3050 1870 551 343.5 

23* 27°14.66'S, 105°04.27'W 1105 3125 2020 960 646.4 

24 26°38.90'S, 104°55.68'W 709 3250 2541 1038 879.2 

25* 26°24.81'S, 104°51.45'W 605 2890 2285 747 569.0 

26 26°50.64'S, 104°46.81'W 1726 3300 1574 641 336.3 

27 26°24.97'S, 104°36.95'W 1396 3400 2004 810 541.1 

28* 26°07.71'S, 103°49.18'W 330 2835 2505 1229 1026.2 

29 26°23.39'S, 103°36.98'W 1819 3100 1281 996 425.3 

30* 26°10.63'S, 102°57.78'W 260 3110 2850 970 921.5 

31 27°00.24'S, 102°59.05'W 482 3300 2818 1160 1089.6 

32 26°10.56'S, 102°41.76'W 1205 3100 1895 931 588.1 

33 26°02.90'S, 102°25.13'W 191 3000 2809 853 798.7 

34 27°05.98'S, 102°25.20'W 819 3350 2531 954 804.9 

35 25°52.60'S, 101°57.36'W 622 3200 2578 841 722.7 

36 26°03.42'S, 101°19.43'W 55 3300 3245 1172 1267.7 

* From Seamount Biogeosciences Network 
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Figure 7. Basal area vs. maximum height of considered seamounts. Note that there is a clear trend of increasing basal area 

from the height of the Moai seamount. For altitudes below 2300 m there is no correlation between height and basal area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Volume vs. maximum height of considered seamounts. Note the increase in volume that from the Moai seamount 

height upward. For altitudes below 2300 m there is a low correlation between height and volume. 

 

 
DISCUSSION 

The morphologic pattern of the alignment and its 
relation with tectonics 

The study region shows various types of morphological 

structures. Several of them tend to orientate or follow 

patterns of defined structures. These arrangements 

reflect the possible mechanisms that created them or 
their association with other tectonic phenomena. 

Because of the size of the Pacific Ocean Basin and 

because it represents the boundary between several 

plates, the most important morphologic feature is the 

East Pacific Rise. The Easter microplate is divided into 

a West Rift and an East Rift (Hey et al., 1985; Naar & 

Hey, 1986; Naar, 1992). The East Rift in the study area 

is separated in six segments suggesting that magmatic 

activity has not been continuous, both in space and 

time. The ridge segmentation, as well as the presence 

of a structural high just at its axis, are considered 

common characteristics for fast spreading ridges 

(Macdonald, 1989; Scheirer & Macdonald, 1995). 

Almost all the segments of the ridge in the study area 
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show a slight tendency to curve their tips towards the 

other ridge segment and to form OSCs. The two highest 

segments probably had more recent activity and with 

more magmatic volume, such that allowed for the taller 

height of these fractions. The trends oriented with the 

minor alignments identified are consistent with the 

propagating rift model (Hey et al., 1989). 

The magmatic processes of the ridge affect and 

modify the topography. The features formed by the 

ridge are superimposed on top of those formed by other 

phenomena. In effect, to the north of Easter Island, the 

alignments tend to change their orientations to N-S. 

This behavior is expected for a situation of that changes 

from normal crust spreading to a situation dominated 

by the presence of pseudofaults, which in turn area 

created by the propagation of the ridge. In the southern 

sector of the Easter Fracture Zone (FZ), this dominant 

behavior is also reflected in the topographic features. 

The Easter FZ was recognized as a depression in the 

topography and also produces an offset in the magnetic 

anomalies. This fracture zone represents the trace of a 

transform fault of the mid-ocean ridge before the 

formation of the Easter Microplate more than 2 Myr 
ago (Hey et al., 1995; Martínez et al., 1997). 

The large number of seamounts identified shows 

that volcanic activity is important inside the study 

region. We verify that seamounts align with 

characteristic trends according to their size and height, 

as opposed to what has been claimed by Rappaport et 

al. (1997), who argued that there was no clear pattern 

in their spatial distribution. In general, the largest 

seamounts tend to be aligned in an E-W direction, in 

some cases are forming continuous blocks, as in the 

Salas y Gómez Island sector. The trends of Easter 

Island together with Ahu and Umu can be associated to 

the Easter FZ. And this distinctive arrangement implies 

that the mechanisms that created or modified the 

distribution of this seamount chain were different to 

those of Salas y Gómez. In effect, the strike of the Salas 

y Gómez seamount chain is similar to that of other 

younger alignments in relation with the reorganization 

of the seafloor of the Nazca Plate 25 Myr ago (Tebbens 

& Cande, 1997; Tebbens et al., 1997). The other trends 

in the orientation of the alignments are difficult to 

associate to a particular tectonic process with the 

available data, but one could suspect that there are 

stresses exerted on the plate that can fracture or 

generate internal tension, which could be reflected in 

the elongation of the structures and the linear N-S or 

oblique arrangements. 

Implications on the origin of the alignment 

The simplest mechanism that explains the formation of 

the Easter Submarine Alignment is the hotspot. The 

chain of seamounts and islands extends from W to E 

near the ridge, in the Ahu and Umu volcanic fields, 

because from this point volcanic edifices are born and, 

additionally, in this area volcanoes should be active 

(Hagen et al., 1990). Therefore, the tendency is to 

locate the hotspot there. However, the necessary age 

progression towards the E is not fulfilled (at least within 

the study region), and contemporary volcanism exists 

at various points of the alignment (<3 Myr). The oldest 

adjacent seafloor, at the eastern side, is ~10-12 Myr old. 

Due to the complexity of tectonic processes, such as 

plate reorganizations, jumps in ridge activity, propa-

gating rifts, generation of microplates, etc., it is evident 

that the assumption of a simple mechanism could not 

allow for the complex arrangement of topographic 

features, as well as the sizes involved and the morpho-

logic characteristics.  

The morphologic evidence has shown that two 
different areas exist: the sector of Easter Island and the 
one of Salas y Gómez Island, possibly related to 
different origins for both sites.  Geochemical evidence 
(e.g., Bonatti et al., 1977; Haase et al., 1996; Kingsley 
et al., 2002; Simons et al., 2002) show mixtures of 
tholeiitic and alkaline basalts at various sites, so the 
hotpost should be beneath Salas y Gómez Island, in 
contrast to Haase et al. (1996) who claim that the 
hotspot should be close to Easter Island. Considering 
the hypothesis based on the geochemistry, one observes 
that the morphologic trends of the Salas y Gómez 
seamounts can be satisfactorily associated. It is possible 
that the hotspot is located more to the W of the island 
(at 107°W), given the shapes and strike of seamounts 
12 and 13 (Fig. 6). The latter would be consistent with 
the proposition of Rappaport et al. (1997), who claim 
that the largest seamounts could only be formed by a 
hotspot mechanism. Moreover, the fact that Easter 
Island and other nearby seamounts have large volumes 
is also consistent with an additional magma supply 
coming from the ridge. In any case, the existence of a 
linear topographic connection among the islands allows 
the consideration that the hotspot would not be fixed in 
time, and rather would change its position. The latter 
would be consistent with the variability of the tectonic 
phenomena in the area. 

No morphological evidence was found to support an 
origin by “leaking fracture zone” at least for the entire 
alignment. However, there could be volcanism in any 
site where the structure of the lithosphere would allow 
it. This could have happened in the Easter FZ, taking 
into account the strike of the structures. 

CONCLUSIONS 

In the study area depths between 2950 and 3700 m 
dominate, with an average depth of 3239 m. The Easter 
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Submarine Alignment is formed by seamounts and 
islands of various sizes arranged along a line, with a 
general strike of N85°E, similar to other alignments of 
the Nazca Plate with ages younger than 25 Myr. In the 
study area 514 seamounts were counted, showing that 
volcanic activity is important in this region, from which 
334 had a basal area less than that of Moai, the 
reference seamount. In general, larger seamounts 
(>1000 m in height) tend to align themselves and have 
larger volumes whereas smaller seamounts tend to be 
distributed more randomly, with rounded or dome 
shapes. However, they have a general tendency to 
distribute themselves with an E-W arrangement with an 
elongation of their bases in this same direction. 

The processes of the East Pacific Rise and others 

associated with the generation of Easter Microplate, 

such as overlapping spreading centers and propagating 

rifts reflect themselves in the topography adjacent to 

this mid-ocean ridge and are superimposed on top of 

other structures generated by different mechanisms. 

The results of the spatial distribution and sizes of the 

seamounts, shapes and arrangements of bases, 

differences in the topographic tendencies in the Easter 

Island and Salas y Gómez Island areas, together with 

geochemical and seafloor ages information, support the 

argument that the best mechanism to explains the origin 

of the volcanic chains is that of the existence of a 

hotspot caused by a mantle plume localized to the W of 

Salas y Gómez Island, probably at ~107°W. This plume 

could provide additional magmatic material towards 

the East Pacific Rise or the Easter Microplate through 

canalizations (Rodrigo, 2000), whose secondary branches 

could feed intermediate volcanoes between the East 

Pacific Rise and the hotspot. It is possible that there is 

another minor supply of material, through fractures in 

the crust due to the crustal weakening produce by the 

Easter Fracture Zone, for the Rapa Nui or Easter Chain 

in addition to the material coming from the previously 

described mechanisms. 
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