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ABSTRACT. Different datasets and a Bayesian production model were used to assess the status of the Atlantic 

bigeye tuna (Thunnus obesus) stock. Several datasets convey little information hence estimations of parameters 
are imprecise unless a very restrictive prior is used. Modes of posteriors calculated for composite datasets are in 

between modes of the posteriors calculated for separated datasets. Most of the calculations indicate that biomass 
has decreased until the beginning of 1990’s when the stock was overfished. Catches decreased after 1999 but 

there is doubt if the stock was recovering in 2000’s. The answer depends on the dataset and on the prior 
distribution. 
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  Análisis de sensibilidad de la captura por unidad de esfuerzo del atún patudo del    

  Atlántico (Thunnus obesus) con series de datos aplicados a un modelo de producción 
 

RESUMEN. Diferentes conjuntos de datos y un modelo bayesiano de producción fueron utilizados para evaluar 
el stock del atún patudo del Atlántico (Thunnus obesus). Varios conjuntos de datos transmiten poca información 

por lo tanto las estimaciones de los parámetros son imprecisas, salvo que se utilice una distribución a priori muy 
restrictiva. Las modas de las a posteriori calculadas para conjuntos de datos compuestos están entre las modas 

de las a posteriori calculadas para conjuntos de datos separados. La mayoría de los cálculos indica que la 
biomasa ha disminuido hasta principios de los 90 cuando el stock fue sobreexplotado. Las capturas disminuyeron 

después de 1999, pero hay dudas sobre si el stock se estaba recuperando en los años 2000. La respuesta depende 
del conjunto de datos y de la distribución a priori utilizada. 

Palabras clave: evaluación de stock, biomasa, modelo de producción, modelo bayesiano, muestreo adaptable 

por importancia. 

 

 

INTRODUCTION 

Bigeye tuna (Thunnus obesus) are distributed 

throughout the Atlantic Ocean between 50ºN and 45ºS, 

but not in the Mediterranean Sea (ICCAT, 2010). 

Evidences, such as lack of identified genetic hetero-

geneity and the time-area distribution of fish and 

movements of tagged fish, suggest an Atlantic-wide 

single stock, which is currently the hypothesis accepted 

by the International Commission for Conservation of 
Atlantic Tunas (ICCAT). 

In the Atlantic Ocean catches of bigeye are high if 

compared to catches of other tuna species. Only catches 

of the smaller and less valuable skipjack (Katsuwonus  
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pelamis) and yellowfin tuna (Thunnus albacares) are 

higher than those of bigeye. Most of the bigeye has 

been caught by longliners but the species is also caught 

by bait-boat and purse-seine vessels (Miyake et al., 

2004; ICCAT, 2010). Several countries fish bigeye in 

the Atlantic Ocean but catches of Japan, Taiwan, Ghana 

and Spain were the higher ones in the last decade 

(ICCAT, 2010). 

In the last three stock assessment analyses for 

bigeye tuna carried out by ICCAT Working Group 

(ICCAT WG) both simple (e.g., production models-

Schaefer, 1954) and complex models (e.g., fully 

integrated Stock Synthesis-(Method, 1990)) were used 
(ICCAT, 2005, 2008, 2011). ICCAT WG noticed there  
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were considerable uncertainty concerning data and 

methods; consequently, estimations of benchmarks 

were very different. For example, maximum sustain-

nable yield varied between 70,000 and 90,000 ton. 

Regarding methods complex models are more realistic, 

but simple models can be useful when data is limited 

(Ludwig & Walters, 1985). Bayesian and conventional 

versions of simple production models are often used. 

Discussions about the limitations and the usefulness of 

production models can be found in Prager (2002), 

Maunder (2003) and Prager (2003). 

Several datasets from different countries concerning 

different gears and vessels are available for analysis of 

the bigeye stock. Relative abundance indexes 

calculated for different fleets are available in the last 

stock assessment meeting report (ICCAT, 2011). In 

some situations those multiple series of indexes are 

analyzed separately, but analyzing them together and 

composite indexes are also alternatives adopted by 

ICCAT WG. However Richards (1991) suggests that 

the analyses might be conducted separately for each 

dataset and the results should be presented separately to 

the decision makers. Following the same line of 

reasoning Schnute & Hilborn (1993) provided a 

composite model structure that allows the information 

conveyed by each separated dataset to arise in the 

results. Hence the objective here is to assess what are 

the results if we look at separated relative abundance 

datasets in the case of the Atlantic bigeye. Comparisons 

with the results gathered when analyzing composite 
indexes are warranted. 

A Bayesian version of the production model was 

used because it allows previous knowledge about the 

fish stock to be considered in the analysis. For further 

comments on the use of Bayesian approach in fish stock 

assessment see Punt & Hilborn (1997), McAllister & 

Kirkwood (1998) and Meyer & Millar (1999a). Several 

methods can be used to calculate the posterior 

distributions in the Bayesian approach. Analytical 

solutions may be difficult to achieve hence Monte 

Carlo approaches are the alternative. Numerical 

methods like Markov Chain Monte Carlo (MCMC) and 

importance sampling methods are often used (Berger, 

1985; Oh & Berger, 1992; West, 1993). Some authors 

have argued that MCMC is less efficient than 

importance sampling methods (Smith, 1991; Givens, 

1993) though Meyer & Millar (1999a, 1999b) have 

showed that Gibbs sampler can be efficient even when 

there are many parameters. Nevertheless, MCMC may 

not converge when the posterior is multimodal (Newton 

& Raftery, 1994). Among the sampling importance 
methods the Sampling Importance Resampling (SIR) 

was the more popular in fishery stock assessments 

studies carried out in 1990's (e.g., Raftery et al., 1995; 

McAllister & Ianelli, 1997; McAllister & Kirkwood, 

1998). Successful application of the importance 

sampling methods depends on the skill to build an 

importance function that is easy to sample from and 

similar to the posterior but with heavier tails (Van Dijk 

& Kloek, 1983; Oh & Berger, 1992). In this paper 

Adaptive Importance Sampling (AIS) was used 

because it is an iterative procedure in which a finite 

mixture of multivariate probability density functions is 

automatically updated until a suitable importance 

function is achieved (West, 1993). Applications of AIS 

in fisheries analyses can be found in Kinas (1996) and 
Andrade & Kinas (2007). 

MATERIALS AND METHODS 

Catch and relative abundance indexes 

Catches of bigeye in the Atlantic are shown in Figure 
1. There was an increasing trend since commercial 

fishery began in the 1950’s. After the peak in 1994 

catches have decreased until 2002 and since then, there 
was no clear time trend. Catch-per-unit-effort (CPUE) 

data from commercial fisheries are often used to 
calculate relative abundance indexes. Several proce-

dures can be used to “standardize” CPUE in order to 
obtain those indexes (Maunder & Punt, 2004). 

Hereafter I assume to start that standardized CPUEs 

appearing in the 2010 bigeye assessment meeting report 
are useful as relative abundance indexes. Those indexes 

are shown in Table 1. Composite indexes were 
calculated using a generalized linear model with fleet 

as factor (ICCAT, 2011). All the indexes time series are 

shorter than the catch time series. However most of the 
indexes datasets cover a long period, though Morocco 

time series is an exception (S6 in Table 1). Notice also 
that ICCAT WG have excluded some data in order to 

calculate three of the composite time series (i.e., C4, C5  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Catches of Atlantic bigeye tuna as reported in 

the ICCAT 2010 bigeye assessment meeting. Catch for 

2009 is the provisional estimation used in the meeting. 
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Table 1. Relative abundance indexes available for analysis in the 2010 ICCAT bigeye assessment meeting. Letters “S” and 

“C” in the column “Label” stand for separated and composite series respectively. Gears are longline (LL) and baitboat (BB). 
Relative abundance indexes were calculated using data from Brazil (BRA), Japan (JPN), Morocco (MOR), Portugal-Azores 

(POR-AZO), China Taipei (TAI), Uruguay (URU) and United States (USA) and, all data pooled (ALL). 
 

Label Index inputs Year series Weighting factor 

S1 USA LL 1982-2008  

S2 JPN LL 1961-2008  

S3 URU LL 1981-2009  

S4 BRA LL 1980-2008  

S5 TAI LL 1968-2008  

S6 MOR LL 2005-2009  

S7 POR-AZO BB 1970-2008  
C1 ALL 1961-2008 none 

C2 ALL 1961-2008 total catch by year and fleet 

C3 ALL 1961-2008 number of 5º5º squares covered by fleet in the year 

C4 ALL but only 1971 forward 1971-2008 total catch by year and fleet 

C5 ALL except 1970 back JPN LL 1968-2008 total catch by year and fleet 

C6 ALL except 1970 back TAI LL 1961-2008 total catch by year and fleet 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Relative abundance index (available from 2010 ICCAT bigeye assessment meeting). Time series for separated 

fleets are in the left panel, while composite indexes are in the right panel. Labels are: United States (S1), Japan (S2), Uruguay 

(S3), Brazil (S4), Taiwan (S5), Morocco (S6), Portugal-Azores (S7), all data pooled (C1), all data pooled but weighted by 

total catch by year and fleet (C2), all data pooled by weighted by the number of 5º5º squares (latitude longitude) covered 

by the fleet in the year (C3), all data pooled but only 1971 forward and weighted by total catch by year and fleet (C4), all 

data pooled except 1970 back Japanese longline but weighted by total catch by year (C5) and, all data pooled except 1970 

back Chinese Taipei longline but weighted by total catch by year (C6). All separated times series were calculated for 

longline gears except the one of Portugal-Azores which is baitboat. 

 
 

and C6). The motivations to discard the data and the 
details on the methods the ICCAT WG have used to 
calculate the relative abundance indexes are in ICCAT 
(2011) and ICCAT (2012).  

All available relative abundance indexes are showed 
in Figure 2. Variability of the composite datasets is 
lower than of the separated datasets. In addition, some 
of the relative abundance indexes are contradictory. For 
example, Japanese time series (S2) show an increasing 
trend until mid 1970’s and then a decreasing trend until 

the end of 2000's. Relative abundance indexes as 
calculated using data of Taiwan (S5) decreased fast in 
early 1970’s but slowly until the end of 1980’s followed 
by an increase until mid 1990’s and a decreasing trend 
until the end of the time series. Other separated time 
series show erratic pattern or a decreasing trend. While 
some of the separated time series are contradictory all 
across the years, the composite time series are 
conflicting only before 1970 (Fig. 2). Similar 
decreasing trends from 1971 to 2000 appear for all the 
composite time series. 
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Stock assessment model 

Catches and relative abundance indexes are the input 

data for simple production models. Indexes are often 

assumed to be proportional to abundance. I have 

assumed the relationship between biomass (B) and 

relative abundance indexes (I) in the 
tht  year is: 

v

tt eBqI                                 (1) 

Where v  is a normally distributed random variable 

with variance V , accounting for observational error. 

Catchability coefficient q  is assumed to be constant or, 

at least, to change at random over the years. That 

assumption holds if the standardization of CPUE was 
successful. 

I have used the following version of traditional 

logistic production model (Graham, 1935; Schaefer, 
1954): 

 kBrBCBB ttttt 1111 1          (2) 

Where tC  is the catch in the 
tht  year, r  is the 

population growth rate, k  is the carrying capacity 

biomass. Observation error in tC  was assumed to be 

negligible and the process error was not considered. 

Aside the nuisance (V) there are three parameters of 

interest: r , k  and q . Because it is mathematically 

more convenient to deal with parameters defined over 

the real line let  qkr log,log,log  be the three 

dimensional parameter vector of interest. 

Bayesian approach 

Bayesian inference of   is obtained by the product of 

prior probability density distribution π( ) and the 

likelihood  xL |  calculated based on the data x . The 

posterior density distribution for   is: 

 
   
   


xL

xL
xp

|

|
|




                    (3) 

In some cases there is not analytical solution for the 

integral in the denominator. A couple of numerical 

procedures can be used to obtain a sample of   from a 

distribution (importance function) that is assumed to be 

similar to the true posterior  xp | . When using such 

numerical procedure it is necessary to verify if the 

sample of   indeed was drawn from an importance 

function similar to the posterior distribution. Hereafter 

the question about how close are the posterior and the 
importance function is denominated “convergence”. 

Details about the solutions and equations I have used 

are in Kinas (1996) and Andrade & Kinas (2007) but, 

some explanations are warranted in the following 
sections. 

Likelihood 

After taking the logarithm of equation 1 and for 

notational convenience, I define 
tt IY log  and

   tt qBlog . The probability model for tY  is: 

    VNVYp tt ,~,|                   (4) 

Where   VN t ,  is an one-dimensional normal 

distribution with mean  t
 and varianceV . Let the 

complete data set be     YYY ,,1  , hence the joint 

likelihood is      VYpYVL ,||,   . If indepen-

dent prior distributions are assumed for   and for V, 

say      VV  , , then the likelihood  xL |  is 

obtained by marginalization with respect toV : 

       VVVYpxL d ,||            (5) 

Kinas (1996) showed that if the prior for V  is an 

inverse-gamma density distribution, say     ,~ IGV , 

the solution is: 

  
  
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
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xL        (6) 

That choice about prior distribution for V is conve-

nient because the inverse-gamma is conjugated with the 

normal probability in equation 5. The resulting 

likelihood equation is simple in the sense that it only 

depends on the residuals with respect to µt (ɵ) and on 
the prior parameters for V. 

In order to calculate the likelihood (equation 6), 

biomass in each year is estimated by using the equation 

2. Nevertheless, an initial value of biomass for the first 

year needs to be defined in advance. I have assumed the 

initial biomass is equal to the carrying capacity k  (i.e.,

kB 0
) because catch was probably very small before 

the first year to show up in the available time series 

(Fig. 1). Furthermore, when kB 0
 is assumed the 

biases of estimations related to “maximum sustainable 

yield” (MSY) are not large whenever the observational 
error is used to fit the model (Punt, 1990). 

Prior 

The priors for r  and k  used in this paper were based 

mainly on priors the ICCAT WG have used in the 

bigeye assessment meetings (e.g., ICCAT, 2005). In 

2007 the ICCAT WG decided to use a uniform prior for 

149 



Stock assessment of Atlantic bigeye tuna                                                                     5 
 

 

k  bounded at 1.5x105 and 2.5x106 (ICCAT, 2008). The 

informative prior for r  was lognormal, with mean on 

the original scale equal to 0.6, and standard deviation 

on logarithm scale equal to 0.3 (e.g., SD(log r) = 0.3) in 

2004 and 2007 stock assessments (ICCAT, 2005, 

2008). In the 2010 assessment meeting the ICCAT WG 

decided to use again priors similar to those used in the 
two previous meetings (ICCAT, 2011). 

The priors I have used are in line to those mentioned 

above. I have used a wide uniform prior U(1x105, 

3.5x106) for k . Two prior distributions for r  were 

used. One informative equal to that used in 2004 

assessment meeting mentioned above and other less 

informative uniform U(0,2), and finally, the prior for q 

remains to be defined. In the past 2004 and 2007 

assessment meetings q was estimated using an 

analytical shortcut (ICCAT, 2005, 2008) while the 

parameters of the prior distribution does not appear in 

the report of the 2010 assessment meeting (ICCAT, 

2011). Hence I shall not use information of those past 

meetings. Because I did not find any other independent 

estimation of q for the Atlantic stock or even for other 

stocks of bigeye worldwide, I have decided to use a 

wide uniform prior for q on logarithm scale U(-30,-5). 

That prior is equivalent to the Jeffrey’s non-informative 

prior (Millar, 2002). In summary I have used two sets 

of priors, one more informative (hereafter just 

denominated as “informative”) and one less infor-

mative (hereafter denominated as “non-informative”). 

The main difference between them concerns the prior 

for r , which is lognormal in the informative and 

uniform in the non-informative prior set. Priors were 

always uniform on original scale for k  and uniform on 

logarithm scale for q . 

Adaptive Importance Sampling (AIS) 

In the sampling importance scheme the density  xp |  

is replaced by an importance function  g  from which 

independent and identically distributed (i.i.d.) samples 

of   can be easily drawn. For each vector drawn from 

the  g  importance function, say i  with  ni ,,1 , a 

weight  w  can be calculated as the ratio between the 

kernel       Lf   of equation 3 and the importance 

function: 

     iii gfw                         (7) 

The normalized weights are 

   
i

iii www *                        (8) 

Let 
*w  be the vector with the values of 

*

iw  with 

 ni ,,1 . A random sample from  xp |  is then 

approximated by resampling the sampled  s with 

probabilities given by the vector
*w . 

In the above approach a good importance function 

 g  should have similar shape but heavier tails than 

 xp |  (Oh & Berger, 1992; West, 1992, 1993). In 

order to find a suitable importance function, West 

(1992, 1993) suggests starting with a first importance 

function (e.g., a multidimensional student), to draw a 

sample of   of size n and to calculate the 

corresponding weights 
*w  just like explained above. 

The importance function is then updated and the 

procedure is repeated a couple of times until the 
importance function becomes close to the posterior. 

In order to update the importance function for a p-

dimensional vector   a Monte Carlo estimation of the 

first sample covariance matrix (p x p) is calculated as: 

    
i

i

t

iiwC *                   (9) 

where the Monte Carlo mean vector is: 


i

iiw  *                            (10) 

The importance function is then updated by 
calculating: 

   
i

ipi ChaTwg ,,,| 2*            (11) 

Where the right-most term is a p -dimensional 

student density with a  degrees of freedom, mean i , 

and variance h2xC where h a smoothing parameter is 

denoted “bandwidth”. I have used a = 9 and the 
bandwidth suggested by Silverman (1986): 

 

b

np
h

1

2

4










                       (12) 

Where b = p + 4. The mixture model  g  approaches 

 xp |  for increasing sample size n  if the bandwidth 

decays at a suitable rate. West (1993) suggests that this 

can be achieved if a fairly small sample size is used in 

the first step and if the sample increases in an 

appropriate rate in the following updating steps. In this 

work the sample size in each cycle was calculated by: 

  sdnn ss  11                     (13) 

where s  is a counter for the looping; d  is some 

positive constant. The initial sample size I have used 

was 40001 sn  and the constant was d = 2. 
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Relative entropy and the final sample 

The goal when using the algorithm described in the 

previous sections is to update the importance function 

before drawing a final sample. The criterion I have used 

to assess if the updating procedure was successful is the 

Relative Entropy (RE) (West, 1993): 

 

n

ww

RE

n

j

jj

log

log
1

**


                       (14) 

It is easy to show that RE  is close to 1 if the 

importance function  g  is close to the posterior

 xp | . 

In the updating procedure I have selected 95.0RE  

as criterion to assume the algorithm has converged. 

Because there is no guarantee that the updating 
procedure will reach that entropy in a few updating 

steps I used a limit of ten cycles. A final sample of   
was drawn with approximate size equal to n15.0  

without replacement with weights w*. The choice 0.15 
is close to 1 in 10 suggested by Smith & Gelfand (1992) 

while sampling without replacement is expected to 

work better in ill behaved cases with few large weights 
(Gelman et al., 1995). In order to gather a final sample 

with 2000 vectors   the AIS sample might exceed 

334,1315.02000   values hence the calculations stop 

when both the entropy is higher than 0.95 and the 

minimum sample size (13,334) have been reached or, 
in the tenth cycle in case of failure. 

Time trend as predicted by the models 

In order to assess the status of the bigeye Atlantic stock 
in the last ten years of the time series the slope of 
regression of catch rate predictions against the years 
were calculated based on the posteriors. Basic statistics 
summaries were calculated for the 2000 (posterior 
sample size) values of slopes estimated for each model. 
The choice concerning the amount of years (10) to 
assess the regression slopes is subjective but it is 
enough to give some idea of the most recent catch rate 
(proxy of biomass) time trend as predicted by the 
models. 

RESULTS 

Convergence and model fittings 

Overall entropy values close to or higher than 0.95 were 

reached in all model runs, hence I have assumed most 

of the models had converged. The exception was the 

calculation for Uruguay dataset (S3) when using the 

informative prior. In this case the entropy after ten 

cycles was 0.83. Hence those results might be 

considered carefully. In general high entropy values 

were obtained sooner when using informative prior 
than when using non-informative prior. 

There are twenty six model fittings (2 sets of priors

 (7 separated 6 composite datasets)), but because 

there are some similarities only four fits are shown as 

example to not clutter (Fig. 3). Most of the models do 

not fits well to the values of the beginning of the time 

series, but fits well to the end of the time series. See for 

example the models fitted to C2 and C3 composite 
datasets with non-informative prior (Figs. 3a-3b). 

Overall most of the model’s predicted catch rates 

decrease until 2000 but calculations after that year are 

controversial. Only four examples are shown in Figure 

3 to not clutter. Some of the model fittings suggest that 

there is not a clear time trend in the end of the series 

(Figs. 3b-3c), while other models suggest increasing 

(Fig. 3a) or decreasing time trends (Fig. 3d). Some of 

the datasets show high variability all across the years or 

during some decades. See for example the large range 

of the 99% credibility interval (dashed lines) calculated 

for Portugal-Azores dataset (S7) (Fig. 3d). In opposi-

tion the precision is high especially for the composite 

datasets (Figs. 3a-3b). 

Notice that in spite of the similar data source 

considered to calculate the C2 and C3 composite 

datasets, fittings of the models are quite different in the 

end of time series. Hence the weights used to calculate 

composite datasets clearly affect the results. Remind 

that the C2 composite dataset was calculated by using 

total catch of each fleet as weight, and the number of 5º

5º (latitude longitude) squares covered by fleets, 

were the weights to calculate the C3 dataset (Table 1). 

Models fitted to Brazil, Morocco and Taiwan 

longline datasets did not show any time trend. See for 

example the model fitted to catch rate of Taiwan 

longline fleet (Fig. 3c) that is not flexible enough to fit 

the peaks and plunges. Brazilian and Morocco model 

fittings also do not show clear time trends. 

Most of the models are biased for the beginning of 

the time series in the sense that the central trend of the 

residuals depart from zero, but they are not strongly 

biased for years after 1995 (Fig. 4). Those models that 

are not strongly biased for the end of the time series are 

grossly classified as “well behaved” models, while 

those showing strong bias in the end of the time series 

are the “ill behaved” models. “Intermediate” models 

are those showing moderate biases in the end of time 

series. Well behaved models are those fitted to S1, S2, 

C3, C4, C5, C6 by using both informative and non-infor- 

mative priors, and to C2 with informative prior. See 

Figure 4a for example. Intermediate models are those 

fitted to C1, S4 and S7 by using both informative and
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Figure 3. Model fittings for: a) C3 composite dataset, b) C2 composite dataset, c) S5 Taiwan dataset and d) S7 Portugal-

Azores dataset. Non-informative priors were used in the calculations. Dashed lines stand for 0.5% and 99.5% percentiles 

while solid lines stand for the median. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Residuals for models fitted to: a) C3 composite dataset, b) C2 composite dataset, c) S5 Taiwan dataset, and d) S7 

Portugal-Azores dataset. Non-informative priors were used in the calculations. 
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non-informative prior and to C2, S3 and S6 with non-

informative prior. See Figs. 4b and 4d for example. 

Models fitted to S5 by using both priors and to S3 and 

S6 datasets with informative prior are the ill behaved 

models (Fig. 4c). 

Statistical summary of the linear regression slopes 

of catch rate predictions (proxy for biomass) over the 

last 10 years of the time series, together with the 

empirical probability that the slope is positive, are 

shown in Table 2. Positive slopes indicate that biomass 

was recovering in 2000's. Most of the empirical 

distributions of the slopes are approximately symmetric 

as indicated by similar values of median and means. 

Values of coefficient of variation are high especially 

when the mean is close to zero. If we rely on the 

empirical probability that the slope is positive, most 

(four) of the models fitted to separated datasets with 

non-informative prior indicate that the probability that 

the stock was recovering in the 2000's is low. In 

opposition, if we rely on the calculations based on 

separated datasets and on informative priors, most of 

the models indicate that the probability that the stock 

was recovering in 2000's is moderate or high. Most of 

the models fitted to composite datasets with non-

informative prior indicate that the probability that the 

stock was recovering in 2000's is also low. The opposite 

pattern arise when informative prior is used in 

calculations. In summary most of the calculations with 

the non-informative prior are pessimistic while the 

calculations with the restrictive informative prior are 
optimistic. 

Posteriors 

Joint and marginal posteriors and priors for r  and k  

are in Figure 5. The characteristic “banana type” shape 

of joint posteriors indicate that estimations of r  and k  

for most of the datasets are strongly correlated (Figs. 

5a, 5d, 5g, 5j). Exceptions are the results for S4 

(Brazil), S5 (Taiwan) and S6 (Morocco) datasets (Figs. 

5a, 5d). As a matter of fact, those three time series 

convey little information about the parameters of the 
surplus production model. 

Overall the effect of the informative prior on joint 

posteriors was to shift the kernel of contour plot to r  

values close to 0.5 and to k  values lower than 

1,500,000 ton when analyzing datasets that convey 

information (S4, S5 and S6). Hence it is evident that the 

restrictive informative prior for r  is also very informa-

tive about k  due to the high correlation between them. 

Marginal posteriors calculated for S1, S2, S3, S7 

and for most of the composite datasets give high 

densities to small values of r  (<0.3) if the non-

informative prior is used (Figs. 5b, 5h). If the 

informative prior is used the marginal posteriors shift 
to right (Figs. 5e, 5k) because that prior gives little  

 
Table 2. Mean, median and coefficient of variation (CV) of simple linear regressions slopes fitted to predictions of catch 

rate for the last ten years, and empirical probability (Pr) that the slope is positive. Datasets: USA longline (S1), Japan 

longline (S2), Uruguay longline (S3), Brazil longline (S4), Taiwan longline (S5), Morocco longline (S6), Portugal-Azores 

bait-boat (S7), all data combined but not weighted (C1), all data combined weighted by catch per year and per fleet (C2), 

all data combined weighted by area (C3), all fleets but only 1971 forward weighted by catch (C4), all data combined 

weighted by catch but 1970 back Japan longline discarded (C5) and all data combined weighted by catch but 1970 Taiwan 

longline discarded. 
 

Dataset Median Mean CV Pr Median Mean CV Pr 

S1 - 00.016 - 0.013 - 0.970 0.148 0.000 0.001 12.810 0.511 

S2 - 0.008 - 0.006   1.038 0.150 0.003 0.003 2.612 0.618 
S3 - 0.028 - 0.027 0.451 0.041 - 0.002 - 0.006 2.700 0.479 

S4   0.003   0.007 1.484 0.997 0.005 0.008 0.918 1.000 

S5   0.003   0.004 0.845 0.999 0.005 0.006 0.657 1.000 

S6   0.002   0.001 15.389 0.948 0.003 0.004 1.204 0.996 

S7 - 0.034 - 0.033 0.269 0.008 - 0.031 - 0.029 0.378 0.013 

C1 - 0.012 - 0.009 1.259 0.185 0.007 0.008 1.399 0.751 

C2 - 0.006 - 0.003 3.492 0.320 0.017 0.018 0.498 0.993 

C3   0.031   0.031 0.495 0.992 0.034 0.035 0.322 1.000 

C4 - 0.020 - 0.019 0.220 0.002 0.002 0.003 2.028 0.634 

C5 - 0.023 - 0.021 0.303 0.012 0.002 0.003 3.410 0.588 

C6 - 0.008 - 0.005 1.491 0.207 0.016 0.016 0.470 0.998 
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Figure 5. Posteriors of r  (intrinsic growth rate) and k  (carrying capacity). Datasets: USA (S1), Japan (S2), Uruguay (S3), 

Brazil (S4), Taiwan (S5), Morocco (S6), Portugal-Azores (S7), all data pooled (C1), all data pooled but weighted by total 

catch by year and fleet (C2), all data pooled by weighted by the number of  5º5º squares (latitude longitude) covered by 

the fleet in the year (C3), all data pooled but only 1971 forward and weighted by total catch by year and fleet (C4), all data 

pooled except 1970 back Japanese longline but weighted by total catch by year (C5) and, all data pooled except 1970 back 

Chinese Taipei longline but weighted by total catch by year (C6). Panels a, b, c, g, h and i are for analyses with non-

informative prior, while results gathered with informative prior are in the other six panels. Contour lines are at 0.01 of the 

largest density. 
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weight to low values of r  (<0.25). Posteriors of r  for 

S4, S5 and S6 datasets are strongly affected by the 

informative prior. Because those three datasets do not 

convey information about r , if the informative prior is 

used, the posteriors are equal to the prior, but they are 
flat if the non-informative prior is used. 

All separated datasets convey little information 

about k, hence the precisions of the marginal posteriors 

are low if the non-informative set of priors are used in 

the calculations (Fig. 5c). As a matter of fact S4, S5 and 

S6 convey no information about k  and the posteriors 

are flat and truncated in the right tail by the prior (Figs. 

5c, 5f). Posteriors of k  as calculated for the datasets 

S1, S2, S3 and S7 are much more precise when 

informative priors are used (Fig. 5f). Densities are high 
for values close to 800,000 ton. 

Composite datasets convey information about k  

but the calculated posteriors are contradictory. For 

example, if the non-informative priors are used the 

mode of the posterior for C3 dataset (all data weighted 

by area) is close to 600,000 ton, while the mode of the 

posterior for C4 (only 1971 forward data weighted by 

catch) is close to 3,000,000 ton (Fig. 5i). The modes of 

the more precise posteriors as calculated with 

informative prior are close to 1,000,000 ton for all the 

composite datasets (Fig. 5l). 

Posteriors for q are not shown to not clutter. 

Nevertheless most of the comments above concerning 

estimations and effects of priors on the posteriors of r  

and k are also valid for posteriors of q. In summary, all 

marginal posteriors were unimodal and the precision of 

the calculated posteriors with informative prior are 

usually higher than those calculated with the non-

informative prior. 

Maximum Sustainable Yield and ratios F/FMSY and 

B/BMSY 

Posteriors of yield at MSY ( MSYY ) are in Figure 6. 

Precision of posteriors calculated for USA (S1), Japan 

(S2), Uruguay (S3) and Portugal-Azores (S7) were 

large, while posteriors calculated for the other three 

separated datasets (S4, S5 and S6) were flat (Figs. 6a-

6b). All posterior samples were pooled to summarize 

the results. The “pooled posterior” for separated 

datasets has a mode close to 73,000 ton when using 

non-informative prior (Fig. 6a) and a mode close to 

91,000 ton as calculated using informative prior (Fig. 
6b). 

Estimations of YMSY for composite datasets as 
calculated with non-informative priors are contra-

dictory (Fig. 6c). The more optimistic scenario is the 

one calculated for C3 (YMSY mode close to 100,000 ton) 

while calculations for the C4 and C5 datasets are 

pessimistic (YMSY mode close to 50,000 ton). The modes 

of the posteriors of YMSY for composite datasets 

calculated with informative prior have shifted to right 

if compared to those calculated with non-informative 

prior. Contour plots based on the ratio between fishing 

mortality (F) in 2009 and at MSY and on the ratio 

between biomass (B) in 2009 and at MSY are shown in 

Figure 7. Optimistic scenarios are indicated by 

12009 MSYFF  and 12009 MSYBB  while pessimistic 

scenarios are indicated by 12009 MSYFF  and

12009 MSYBB . Calculations based on S1, S2, S3 and 

S7 datasets point for a pessimistic scenario while those 

results calculated with the datasets that do not convey 

information about r  and k  (S4, S5, S6) are very 

precise and optimistic. The effect of the informative 

prior is to shift the kernel of contour plots for S1, S2, 

S3 and S7 datasets to a less pessimistic scenario and, to 

shift the kernel of contour plots for S4, S5 and S6 

datasets to a less optimistic scenario. Calculations with 

non-informative priors for composite datasets are more 

pessimistic than calculations with informative priors 

(Figs. 7c-7d). Kernels of contour plots calculated for 

composite datasets are in between those calculated for 

the more informative (S1, S2, S3, S7) and less 
informative (S4, S5, S6) separated datasets. 

Posterior probabilities calculated for optimistic, 

intermediate and pessimistic scenarios are in Table 3. If 

we rely on the calculations for S1, S2, S3 and S7 

datasets we would be almost sure that the stock was 

overexploited in 2009, but if we rely on calculations for 

S4, S5 and S6 datasets we would be almost sure that the 

stock was underexploited. The effect of the priors is 

also important. Calculations for separated datasets 

based on the informative prior are more optimistic. 

Calculations for some of the composite datasets are also 

very sensitive to priors. Most of the calculations with 

the non-informative prior indicate that the stock was 

overexploited in 2009. However, only three models 

indicate overexploitation if the informative prior is 

used. Calculations for C2 and C6 datasets are the more 

sensitive to prior. If the non-informative priors are 

used, the results indicate that the probability of 

overexploitation is high, but the opposite arise when 

using informative priors (Table 3). 

In summary the assessment results were very 

sensitive to priors and CPUE series used. Model 

estimations were less robust when non informative 

priors were used; in the sense that calculations based in 

different datasets are contradictory. Overall, the 

assessment results were optimistic when informative 

priors and composite CPUE series were used. 
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Figure 6. “Maximum sustainable yield” as calculated using alternative datasets: United States (S1), Japan (S2), Uruguay 

(S3), Brazil (S4), Taiwan (S5), Morocco (S6), Portugal-Azores (S7), all data pooled (C1), all data pooled but weighted by 

total catch by year and fleet (C2), all data pooled by weighted by the number of  5º5º squares (latitude longitude) covered 

by the fleet in the year (C3), all data pooled but only 1971 forward and weighted by total catch by year and fleet (C4), all 

data pooled except 1970 back Japanese longline but weighted by total catch by year (C5) and, all data pooled except 1970 

back Chinese Taipei longline but weighted by total catch by year (C6). Densities for pooled samples of posteriors are also 

showed (thick dashed lines). Calculations with non-informative priors are in panels A and C while results gathered with 

informative priors are in panels b and d. 

 

 

DISCUSSION 

Surplus production model is not the only way to 

calculate r . Some of the other methods to calculate r  

are based on population dynamics parameters (e.g., 

growth and, age and length at maturity) like, for 

example, solving classical Euler-Lotka equation 

(Fisher, 1930) for r. There is an example on how to 

calculate r  by that method in the site of FLR-project 
(http://flr-project.org) that is a collection of packages to 

conduct quantitative fisheries science. Coincidentally 

the example is about Indic Ocean bigeye stock. After 

running the code one gets 66.0r . As a matter of 

fact, the informative prior I and ICCAT WG (e.g., 

ICCAT, 2005, 2008, and 2011) have used gives high 

weight to values close to 0.66. However, the posteriors 

give more weight to low values of r , the information 

conveyed by most of the datasets contradicts that 

informative prior. In the past ICCAT stock assessment 

meetings (e.g., ICCAT, 2005) the restrictive prior for 

r  was considered not ideal but necessary because the 
data were not informative enough to get meaningful 

estimations of the production model’s parameters. 

Hence the conclusion is that the commercial CPUE da-
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Figure 7. Contour plots as calculated with non-informative priors (a and c) and with informative priors (b and d). Datasets: 
United States (S1), Japan (S2), Uruguay (S3), Brazil (S4), Taiwan (S5), Morocco (S6), Portugal-Azores (S7), all data pooled 

(C1), all data pooled but weighted by total catch by year and fleet (C2), all data pooled by weighted by the number of 5ºx5º 

squares (latitude longitude) covered by the fleet in the year (C3), all data pooled but only 1971 forward and weighted by 

total catch by year and fleet (C4), all data pooled except 1970 back Japanese longline but weighted by total catch by year 

(C5) and, all data pooled except 1970 back Chinese Taipei longline but weighted by total catch by year (C6). Contour lines 

are at 0.1 of the largest density. 

 

 

taset are not very useful to run production models for 
bigeye. 

The shortcomings of using CPUE from commercial 

fisheries in assessment of fish populations are well-

documented (e.g., Beverton & Holt, 1957; Hilborn & 

Walters, 1992; Swain & Sinclair, 1994; Harley et al., 

2001). In the case of the Atlantic bigeye there are at 

least three questions: i) the fishing scenario was the 

“one way trip” (monotonous increasing trend of fishing 

effort and of catch along with monotonous decreasing 

trend of CPUE) which result in poor relative abundance 

indexes (see Hilborn & Walters, 1992). In the bigeye 

case the monotonous pattern appeared during most of 

the analyzed period (1950 through mid 1990’s); ii) the 

relationship between CPUE and abundance is not linear 

and violates the usual assumption; and iii) the available 

relative abundance indexes are not very useful because 

data and/or the model used to standardize the CPUE are 

not the ideal. The solution of the question i depends of 

the future development of fishery that is related to 

complex political, ecological and socioeconomic 

issues. Questions ii and iii could be further studied and 

maybe overcome if the quality and quantity of the data 

improve and if fishery independent data are collect. 

However, scientific programs for highly migratory 

species are very expensive and difficult to implement 
(Bishop, 2006).  

The restrictive informative prior used to overcome 

the poor relative abundance indexes has a strong effect 

on the calculations and conclusions about the status of 

the stock especially in the end of the time series. Let 

MSYY  as benchmark to illustrate. If annual catches of 

bigeye are compared to posterior of MSYY  benchmark 

the conclusion is that the stock was overfished from the 

beginning of 1990’s until the beginning of 2000’s if one 

relies in the results gathered with informative prior. 
However, results calculated with non-informative prior 
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Table 3. Probabilities based on ratios between fishing mortality (F) and biomass (B) in the last year (2009) with respect to 

F and B at MSY.  11Pr 20092009  MSYMSY BBFFpa ;  11Pr 20092009  MSYMSY BBFFpb ;

 11Pr 20092009  MSYMSY BBFFpc ;  11Pr 20092009  MSYMSY BBFFpd . Datasets: USA longline (S1), 

Japan longline (S2), Uruguay longline (S3), Brazil longline (S4), Taiwan longline (S5), Morocco longline (S6), Portugal-

Azores longline (S7), all fleets combined - no weight (C1), all fleets combined - weighted by catch (C2), all fleets combined 

- weighted by number of 5ºx5º squares covered by fleet in the year (C3), all fleets but only 1971 forward - weighted by 

catch (C4), all fleets except 1970 back Japan - weighted by catch (C5), all fleets except 1970 back Taiwan - weighted by 

catch (C6). 

 

Dataset 
 Non-informative prior  Informative prior 

 pa pb pc pd  pa pb pc pd 

S1  0.9580 0.0020 0.0140 0.0260  0.8295 0.0000 0.0695 0.1010 
S2  0.9810 0.0000 0.0125 0.0065  0.8705 0.0000 0.0640 0.0655 

S3  0.9540 0.0095 0.0005 0.0360  0.6310 0.0000 0.0187 0.3503 

S4  0.0015 0.0010 0.0000 0.9975  0.0000 0.0000 0.0000 1.0000 

S5  0.0000 0.0005 0.0000 0.9995  0.0000 0.0000 0.0000 1.0000 

S6  0.0445 0.0045 0.0000 0.9510  0.0080 0.0000 0.0000 0.9920 

S7  0.9595 0.0000 0.0395 0.0010  0.9215 0.0000 0.0775 0.0010 

C1  0.9375 0.0010 0.0190 0.0425  0.7295 0.0000 0.1075 0.1630 

C2  0.9040 0.0005 0.0425 0.0530  0.1115 0.0085 0.0140 0.8660 

C3  0.0290 0.0105 0.0025 0.9580  0.0065 0.0000 0.0020 0.9915 

C4  1.0000 0.0000 0.0000 0.0000  0.9330 0.0000 0.0405 0.0265 

C5  0.9995 0.0000 0.0000 0.0005  0.8790 0.0000 0.0550 0.0660 
C6  0.6880 0.1800 0.0010 0.1310  0.1210 0.0135 0.0280 0.8375 

 

 

indicate that the stock was already overfished in the end 

of 1980’s and that it has been overfished since them. 

The less pessimistic scenario calculated with the 

informative prior arise because it constrains r  to high 

values, while the majority of the datasets point for a 

much less productive stock. 

In spite of the recommendation to use separated 

indexes (Richards, 1991) or to use models that allow 

the information conveyed by separated indexes to show 

up in the results (Schnute & Hilborn, 1993), ICCAT 

WG have been often adopted composite indexes. The 

motivations are: a) “to produce a single series for input 

in an assessment model either to minimize model 

convergence problems arising from conflicting 

indexes”; and b) “to integrate and summarize the 

information provided by multiple indexes into a single 

trend ... to compare trends of abundance for the overall 

population ...” (ICCAT, 2012). The objective in this 

paper was not to confront those conflicting points of 

view in an attempt to identify which is better (separated

composite datasets). The objective was to assess what 

are the results and conclusions when using the different 

dataset types when analyzing Atlantic bigeye. 

Sensitivity analyses concerning the effect of discarding 
suspected data when calculating composite time series 

were carried out in the last two stock assessments 

(ICCAT, 2008, 2011). In the last assessment of Atlantic 

bigeye stock, Japanese and Taiwanese catch rate data 

of the very beginning of the time series were considered 

suspected because of the increasing and sharp 

decreasing time trends respectively. Increasing trends 

are not expected when the fishery starts. Also quick 

decreasing trend of relative abundance indexes are not 

expected because the catches were not high in the 

beginning of the fishery. Therefore three of the six 

composite time series calculated by ICCAT WG do not 

include those suspect data. On the other hand, Brazil 

and Morocco datasets were all considered in the 

calculations of the composite datasets in spite of the 

meaningless results that arise when those data are 

analyzed separated. As a matter of fact, Brazilian, 

Moroccan and even the Taiwanese datasets do not 

convey any information about the parameters of the 

production model. A key question is why to consider 
such datasets when calculating composite indexes? 

In a report published recently there are protocols for 

the inclusion or use of CPUE series in assessment 

models (ICCAT, 2012). The protocols are based on 

several characteristics of the data used in the 

standardization calculations, on the diagnostic of the 

model used to standardize CPUE, on biological 
plausibility of the CPUE time series and on many other 

criteria. However, to assess the quality of the 

information, it is an alternative to check if the parameter 
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calculations based on the datasets are meaningful. If 

this criterion is adopted, Brazilian, Moroccan and 

Taiwanese datasets should not be considered in the 

calculations of the composite indexes. If the results of 

the stock assessment gathered with the different 

composite datasets point for the same stock status, the 

discussion about weights and procedures used to 

calculate composite datasets are of secondary 

importance. However this is not the case for bigeye. 

Posteriors were more affected by the choice about the 

procedure used to calculate the composite datasets 

(e.g., weighting by catch or by area) than by the choice 

about discarding suspected data of the beginning of the 

time series. While the choice of the weights is of major 

importance it is usually subjective. Alternative 

approaches to calculate composite indexes are in 

ICCAT (2012) but there is not guidance to assess how 

suitable are a given weighting criterion. Uncertainty 

that arise in the posteriors when analyzing the original 

separated dataset is not properly depicted in the 

calculations for the composite datasets. One might keep 

in mind that because the composite datasets are 

“averages”, the high precision of the calculations is 

artificial. Therefore the results of stock assessment 

based on composite datasets should be carefully 

considered whenever they are used as guidelines for 

management decisions and recommendations. 

If one rely on MSYY  benchmark, most of the results 

indicate that probably the Atlantic bigeye stock have 

been overfished during 1990’s. Also, the calculations 

of probability that 12009 MSYFF  and that 

12009 MSYBB  indicate that bigeye stock was still 

overfished in the end of 2000’s. Nevertheless, there is 

doubt about if the stock has begun to recover since the 

beginning of 2000’s. If we rely on those separated 

datasets that convey some information (S1, S2, S3 and 

S7) or, in the results obtained for composite datasets 

with non-informative priors, the answer is no, probably 

the stock was not recovering in the 2000’s. If we rely 

on the results gathered with composite datasets and 

informative prior, the opposite answer arises. In 

summary the diagnostic about the time trend of the 

abundance of Atlantic bigeye depends on the dataset 
and on the prior considered. 

Finally it is important to recognize that the analysis 

showed in this paper is just one among several possible 

approaches. The model used here is a simple single 

species one, and the usefulness of such models as tool 

for stock assessment and management is debatable 

(Hollowed et al., 2000; Prager, 2002, 2003; Maunder, 

2003; Walters et al., 2005). Therefore, this paper might 

not be the only document considered when assessing 

the Atlantic bigeye stock. Instead the paper was wrote 

to show how informative are the available datasets to 

run production models and how important are the issues 

regarding the alternatives composite versus separated 

datasets and non-informative versus informative priors 
for Atlantic bigeye tuna. 

CONCLUSIONS 

Relative abundance indexes for bigeye as calculated 

using commercial data are not very informative about 

parameters of surplus production models; hence 

scientific programs to obtain fishery independent 

relative abundance indexes for Atlantic bigeye are 

encouraged. Most of the results of the production 

models indicate that bigeye stock was overexploited in 

1990's. However the conclusion about the possibility 

that the stock was recovering in 2000’s depends on the 
dataset and on the prior. 
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