Research Article

Saturación del carbonato de calcio en un área de cultivo de mitílidos en el Seno Reloncaví, Patagonia norte, Chile

Emilio Alarcón¹, Nolasca Valdés¹ & Rodrigo Torres¹

¹Centro de Investigación en Ecosistemas de la Patagonia (CIEP) Bilbao 323, Coyhaique, Chile

Corresponding author: Rodrigo Torres (rtorres@ciep.cl)

RESUMEN. Se realizaron mediciones de temperatura, salinidad, alcalinidad total y carbono inorgánico disuelto del agua de mar superficial dentro de un área dedicada a la producción de semillas de mitílidos en el Seno de Reloncaví, Patagonia norte, durante el otoño (mayo 2012) y el verano austral (enero 2013). Se determinó que el estado de saturación del carbonato de calcio (Ω_{CaCO3}) dentro del área de estudio fue bajo ($\Omega_{\text{aragonita}} < 2$), inclusive con aguas superficiales "corrosivas" para el CaCO₃ (*i.e.*, aguas subsaturadas, $\Omega < 1$), cuando aguas de baja salinidad (<28) y alcalinidad total (<1.800 µmol kg⁻¹) fueron advectadas dentro del centro de producción en mayo de 2012. En enero 2013 la baja salinidad (<25) fue asociada a aguas de baja alcalinidad total (*ca.* 1700 µmol kg⁻¹) provocando bajos niveles de $\Omega_{\text{aragonita}}$ en aguas superficiales equilibradas totalmente con la atmósfera (*i.e.*, 400 µatm). Así, se sugiere que eventos corrosivos para el CaCO₃ (*i.e.*, aguas subsaturadas, $\Omega < 1$) pueden ser una condición frecuente en esta área de producción de mitílidos en la Patagonia norte. La potencial disminución en productividad de *Mytilus chilensis* asociados a la acidificación del océano (AO) recientemente descrita por Navarro *et al.* (2013) y la detección de aguas corrosivas para el carbonato de calcio encontradas, sugieren la necesidad de incluir el monitoreo regular del sistema carbonatos como una variable clave para la evaluación de la capacidad de carga de este sistema de aguas interiores.

Palabras clave: carbonato de calcio, acidificación del océano, Patagonia norte, Chile.

Calcium carbonate saturation state in an area of mussels culture in the Reloncaví Sound, northern Patagonia, Chile

ABSTRACT. The surface waters temperature, salinity, total alkalinity and dissolved inorganic carbon were measured within an area dedicated to the industrial production of Chilean mussel at Reloncaví Sound Northern Patagonian during Austral autumn (May 2012) and Austral summer 2013 (January). We calculate that the calcium carbonate saturation state (Ω_{CaCO3}) of surface waters within the study area was low (Ω_{Ar} <2) and even "corrosive" surface seawater for $CaCO_3$ (*i.e.*, subsaturated water, Ω <1) when waters of low salinity (<28) and total alkalinity (<1800 µmol kg⁻¹) were advected to the production center during May 2012. In January 2013 the low salinity (<25) water were associated to low total alkalinity (*ca.* 1700 µmol kg⁻¹) which are produce low Ω_{Ar} in surface water fully equilibrated with the atmosphere (*i.e.*, 400 µatm). So we suggest here that events of low and even "corrosive" waters for $CaCO_3$ in these centers of production of Chilean mussel at Northern Patagonian may be a frequent condition. The recent report of the potential decrement in the Chilean mussel (*Mytilus chilensis*) productivity due to ocean acidification (Navarro *et al.*, 2013) and the occurrence of $CaCO_3$ corrosive waters reported here, depict the pertinence of including the carbonate system as a key variable in the assessment of the "carrying capacity" of this coastal systems.

Keywords: calcium carbonate, ocean acidification, northern Patagonia, Chile.

INTRODUCCIÓN

Los mitílidos forman sus valvas de carbonato de calcio a partir del ion carbonato y ión calcio del medio circundante. A su vez la concentración de estos dos iones determina el estado de saturación de las diferentes formas cristalinas de carbonato de calcio en el medio marino (e.g., aragonita y calcita). El estado de saturación del carbonato de calcio se describe por el parámetro Omega (Ω):

$$\Omega = [Ca^{2+}] \times [CO^{2-}_{3}] / K*_{sp}$$

donde K^*_{sp} es el producto de la solubilidad aparente y depende de la temperatura, salinidad y presión correspondiente de la fase mineral particular (Zeebe & Wolf-Gladrow, 2001). Valores de Ω <1 representan aguas subsaturadas en CaCO₃ lo que indica que el CaCO₃ en esas aguas se tiende a disolver (*i.e.* indica aguas corrosivas para el CaCO₃).

En aguas costeras existe una amplia variedad de procesos locales que tienen el potencial de reducir el estado de saturación del carbonato de calcio (*i.e.*, eutroficación, descarga de ácidos desde relaves mineros, descarga de ríos de baja alcalinidad, etc.) y sus efectos se suman a los asociados a estresores globales como la acidificación del océano (Orr *et al.*, 2005).

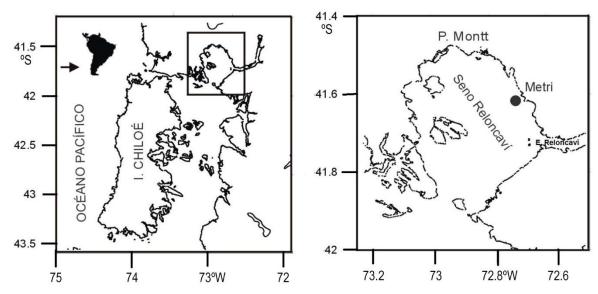
La reducción del pH y estado de saturación del carbonato de calcio en el mar debido al ingreso de CO₂ "antropogénico" al océano se conoce como acidificación oceánica (AO, Orr et al., 2005). Los estuarios, caracterizados por aguas superficiales de baja salinidad y alcalinidad son particularmente vulnerables a la AO debido a la baja capacidad buffer que caracterizan esos sistemas (Chierici & Fransson, 2009). Estos sistemas son proclives a disminuir rápidamente su nivel de saturación de CaCO₃ y pH, lo que produce incertidumbre respecto al uso de estos sistemas en el cultivo de moluscos calcificadores de importancia económica (Salisbury et al., 2008). En América del Sur, el cultivo de moluscos es una actividad de relevancia económica y social para las comunidades costeras de la región Patagónica. Sin embargo, el estado actual de saturación del CaCO3 dentro de áreas de cultivo de moluscos calcificadores es desconocido. El presente estudio reporta por primera vez la variabilidad del estado de saturación del carbonato de calcio en aguas estuarinas al interior del Seno Reloncaví, dentro de una concesión acuícola con cultivo de semillas de Mytilus chilensis.

MATERIALES Y MÉTODOS

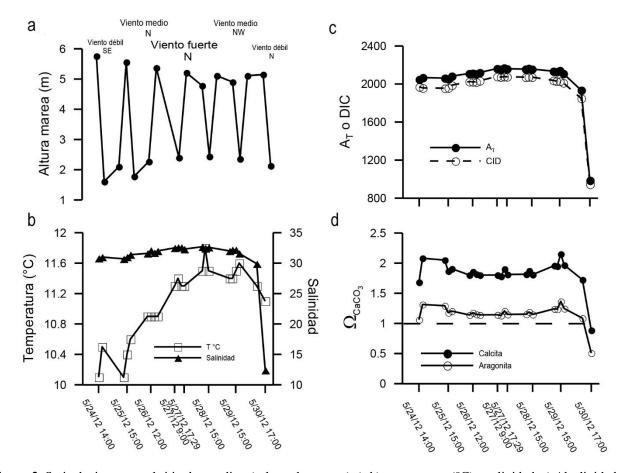
Se midió la temperatura, salinidad, alcalinidad total (A_T) y carbono inorgánico disuelto (CID) del agua superficial en una estación costera (41,5951°S, 72,7169°W), ubicada al interior de una concesión acuícola para la producción de mitílidos juveniles en la localidad rural de Metri Seno Reloncaví (Fig. 1), durante el otoño 2012 (24-30 de mayo) y verano 2013 (22-26 de enero).

La salinidad y temperatura superficial se midió inmediatamente después de la toma de muestras utilizando un salinómetro manual YSI 30/10 FT, USA. Las muestras de agua superficial fueron recolectadas en botellas de propileno de alta densidad de 250 mL y viales de borosilicato de 40 mL, fijadas con una gota de

solución de cloruro de mercurio saturado, para la medición de A_T y CID, respectivamente. En la primera campaña (mayo) se midió la A_T , CID, fosfato y silicato. En la segunda campaña (enero) sólo se midió la A_T .


La alcalinidad total (A_T) se midió utilizando el método de Haraldsson et al. (1997) y el carbono Inorgánico disuelto (CID) se midió utilizando un analizador automático CID (Apollo SciTech. Inc.), calibrado con agua de referencia del laboratorio del Dr. Andrew Dickson (Scripps Institution of Oceanography of the University of California, San Diego). La concentración de ácido silícico y fosfato en la muestras de agua se determinó por el método manual descrito por Strickland & Parsons (1968). Con los datos de A_T, CID, temperatura, salinidad, fosfato y ácido silícico se calculó el resto de los parámetros del sistema carbonato, utilizando para ello el programa CO2SYS (Lewis & Wallace, 1998). Para los cálculos se utilizaron las constantes de disociación de ácido carbónico derivadas por Mehrbach et al. (1973) y remodeladas por Dickson & Millero (1987).

Adicionalmente, se describe el periodo de marea e intensidad y dirección del viento durante la recolección de las muestras de agua de la primera campaña, basado en la información suministrada por el Servicio Hidrográfico y Oceanográfico de la Armada de Chile (SHOA) y Dirección General de Aeronáutica Civil de Chile (DGAC), El Tepual, Puerto Montt.


RESULTADOS

Durante la campaña de otoño el agua superficial estaba relativamente fría (10,1-11,8°C) y con salinidad >30 a excepción de los últimos dos muestreos donde la salinidad decreció abruptamente (Fig. 2b). Un patrón similar se observó con el CID y A_T (Fig. 2c). El nivel de saturación del agua con respecto al carbonato de calcio (Ω) varió entre 0.89-2.15 y 0.51-1.37 para aragonita y calcita respectivamente (Fig. 2c). Los niveles de saturación del agua con respecto a la aragonita se mantuvieron bajos y cercanos del nivel de saturación ($\Omega = 1$), alcanzando niveles subsaturados (aguas corrosivas para el CaCO₃) durante el último día (Fig. 2d), asociados con aguas de baja salinidad y alcalinidad. No se observó relación alguna entre las variaciones de marea y las variables oceanográficas medidas en este estudio.

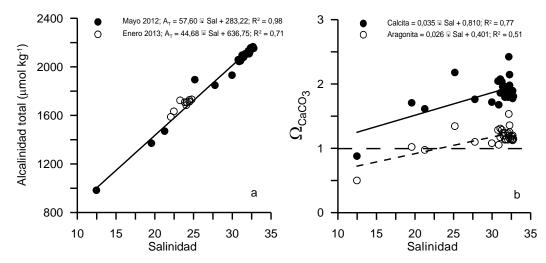

Durante la campaña de verano la temperatura superficial casi duplicó la temperatura de otoño (Tabla 1) y la salinidad promedio fue ca. 24 con una A_T promedio de 1700 μ mol kg⁻¹ (Fig. 3a, Tabla 1). A pesar de no medir el CID en esta campaña, se calculó Ω_{CaCO3} asumiendo que el CO_2 del agua superficial estaba totalmente equilibrado con el CO_2 atmosférico (de una P

Figura 1. Sitio de estudio (●) al interior del Seno Reloncaví.

Figura 2. Serie de tiempo en el sitio de estudio: a) altura de marea (m), b) temperatura (°C) y salinidad, c) Alcalinidad total (A_T , μmol kg^{-1}) y carbono inorgánico disuelto (CID, μmol kg^{-1}), d) nivel de saturación de aragonita (Ω_{Ar}) y calcita (Ω_{Ca}). Los datos de marea fueron obtenidos del Servicio Hidrográfico y Oceanográfico de la Armada de Chile (SHOA). La descripción sobre el panel a indica la dirección e intensidad del viento máximo diario (débil <3 m s⁻¹; medio ~4-6 m s⁻¹ y fuerte >9 m s⁻¹) obtenido de la Dirección General de Aeronáutica Civil de Chile (DGAC), El Tepual, Puerto Montt. La línea punteada en d) indica el nivel de saturación para el CaCO₃ (Ω = 1).

Figura 3. a) Relación entre la salinidad y la alcalinidad total para ambas campañas, b) relación entre la salinidad y Ω_{CaCO3} para la primera campaña (mayo 2012). La línea punteada en b indica el nivel de saturación para el CaCO₃ (Ω = 1).

Tabla 1. Estadística descriptiva de salinidad, temperatura, alcalinidad total, carbono inorgánico disuelto (CID), estado de saturación del Ca (Ω_{Ca}) y estado de saturación de la aragonita (Ω_{Ar}) en las dos campañas. *Cálculo referencial asumiendo que el agua de mar superficial está totalmente equilibrada con la atmósfera (*i.e.*, 400 μatm). DE: desviación estándar.

	Período	Promedio ± DE	Máximo	Mínimo
Salinidad	Otoño 2012	$30,02 \pm 4,62$	32,7	12,4
_	Verano 2013	$23,74 \pm 0,92$	24,7	22,0
Temperatura (°C)	Otoño 2012	$11,21 \pm 0,49$	11,9	10,1
_	Verano 2013	$20,54 \pm 0,57$	21,4	19,6
Alcalinidad total (µmol kg-1)	Otoño 2012	$2012,30 \pm 268,67$	2169,78	987,31
_	Verano 2013	$1704,01 \pm 44,26$	1736,03	1591,94
CID (µmol kg ⁻¹)	Otoño 2012	$1919,95 \pm 262,01$	2079,14	945,84
_	Verano 2013*	$1561,61 \pm 56,58$	1605, 86	1436,08
ΩCa	Otoño 2012	$1,87 \pm 0,25$	2,43	0,89
_	Verano 2013*	$2,43 \pm 0,19$	2,58	1,99
ΩAr	Otoño 2012	$1,18 \pm 0,17$	1,54	0,51
	Verano 2013*	$1,52 \pm 0,13$	1,62	1,24

 CO_2 de 400 µatm). Este cálculo (referencial) indicó que aún en una condición de equilibrio con la atmósfera y altas temperaturas, el nivel de saturación de la aragonita es bajo (Ω_{Ar} < 2) aunque supersaturado (Tabla 1). Para ambas campañas se observó una alta correlación entre la salinidad y los valores de alcalinidad total (Fig. 3a).

DISCUSIÓN

Los niveles de saturación del carbonato de calcio indican que el agua superficial donde se cultivan juveniles de *M. chilensis* está cercano a ser corrosivo para el CaCO₃. La presencia de aguas estuarinas "corrosivas" en esta concesión acuícola se asoció a la advección de agua desde el Estuario Reloncaví localizado a 15 km al sur (Fig. 1), por lo que se presume

una condición de ingreso superficial de agua continental de baja salinidad, alcalinidad y Ω_{CaCO3} .

Aunque las aguas superficiales particularmente cálidas de verano 2013 tienden a aumentar los niveles de Ω_{CaCO3} (Opdyke & Wilkinson, 1993), los bajos niveles de salinidad y A_{T} registrados sugieren que los juveniles de M. *chilensis* están expuestos a bajos niveles de saturación más no corrosivos para el CaCO₃ en este período.

La alta correlación entre la salinidad y el estado de saturación del carbonato de calcio (Fig. 3b) en la zona de estudio, indica el bajo aporte de alcalinidad en aguas continentales de la Patagonia norte. Así, el efecto de dilución en salinidad va acompañado de una reducción en la alcalinidad (Torres *et al.*, 2011).

La reducción de los niveles de productividad de juveniles de *M. chilensis* a altos niveles de CO₂ (Navarro *et al.*, 2013), en combinación con los bajos niveles de saturación del CaCO₃ y eventos "corrosivos" mostrados en este estudio, sugieren que efectivamente la producción de *M. chilensis* es vulnerable a fuentes locales y globales de acidificación. Por lo anterior, el nivel de saturación del agua marina con respecto al carbonato de calcio, debiese ser una variable a monitorear cuando se decide estimar la "capacidad de carga" de estos sistemas costeros. En consecuencia, parece evidente la necesidad de considerar la química del carbono para diseñar el manejo adecuado del cultivo de *M. chilensis* en la región Patagónica.

AGRADECIMIENTOS

Este Proyecto fue financiado por el IAEA Contrato N°17540. Agradecemos al Sr. Marcelo Medina (Administrador de la Concesión de Acuicultura) por dar todas las facilidades e involucrase personalmente en el trabajo de terreno y a la Dra. Claudia Torres Saavedra por su apoyo en la logística involucrada en este trabajo.

REFERENCIAS

- Chierici, M. & A. Fransson. 2009. Calcium carbonate saturation in the surface water of the Arctic Ocean: under saturation in freshwater influenced shelves. Biogeosciences, 6: 2421-2432.
- Dickson, A.G. & F.J. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res., 34: 1733-1743.
- Haraldsson, C., L. Anderson, M. Hassellöv, S. Hulth & K. Olsson. 1997. Rapid, high precision potentiometric titration of alkalinity in ocean and sediment pore waters. Deep-Sea Res. I, 44: 2031-2044.

Received: 4 July 2013; Accepted: 6 October 2014

- Lewis, E. & D.W.R. Wallace. 1998. Program developed for CO₂ system calculations. Oak Ridge, Oak Ridge National Laboratory ORNL/CDIAC-105.
- Mehrbach, C., C. Culberson, J. Hawley & R. Pytkowicz. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr., 18: 897-907.
- Navarro, J., R. Torres, K. Acuña, C. Duarte, P. Manríquez, M. Lardies, N. Lagos, C.A. Vargas & V. Aguilera. 2013. Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel *Mytilus chilensis*. Chemosphere, 90(3): 1242-1248.
- Opdyke, B.N. & B.H. Wilkinson. 1993. Carbonate mineral saturation state and cratonic limestone accumulation. Am. J. Sci., 293: 217-234.
- Orr, J., V. Fabry, O. Aumont, L. Bopp, S. Doney, R. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R. Najjar, G.K. Plattner, K. Rodgers, C. Sabine, J. Sarmiento, R. Schlitzer, R. Slater, I. Totterdell, M.F. Weirig, Y. Yamanaka & A. Yool. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437: 681-686.
- Strickland, J.D. & T.R. Parsons. 1968. A practical handbook of seawater analysis. Fish. Res. Bd. Can. Bull., 311: 327 pp.
- Salisbury, J.E., M. Green, C. Hunt & J. Campbell. 2008. Coastal acidification by rivers: a threat to shellfish? EOS T. Am. Geophys. Union, 89(50): 513-528.
- Torres, R., S. Pantoja, N. Harada, H.E. González, G. Daneri, M. Frangopulos, J. Rutllant, C. Duarte, S. Ruiz-Halpern, E. Mayol & M. Fukasawa. 2011. Airsea CO₂ fluxes along the coast of Chile: from CO₂ outgassing in central northern upwelling waters to CO₂ uptake in southern Patagonian fjords. J. Geophys. Res., 116, C09006, doi: 10.1029/2010JC006344.
- Zeebe, R. & D. Wolf-Gladrow. 2001. CO₂ in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanogr. Ser., 65: 346 pp.