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ABSTRACT. Prolonged stress hampers immune function and lessens disease resistance of fish, causing 

economic losses. Attention is thus been centered in the study of fish immunology. The main ‘in vivo’ models 
used in immunological studies are: stimulation of immune response (by immunostimulant molecules); induction 

of inflammation; induction of immunosuppression by chronic stress; or administration of drugs. This trial aimed 
at evaluating existing protocols for immunosuppression by drugs in fish, adapted to slow release implants model, 

using hydrogenated vegetable fat (HVF), with the intention of set a controlled immunodeficiency state model 

for advanced studies. The implant model was not efficient in reducing the immune response in a controlled 
manner. Evidence of self, down-regulation in fish immune system was found in implanted fish, what should be 

further investigated using molecular tools.  
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The negative relationship between prolonged stress and 

immune function is a well-known phenomenon in fish 

farming systems, and the cause of economic losses 

mainly in intensive systems (Wedemeyer, 1996). 

Although stress response is important to maintain 

homeostasis in adverse situations, a long-term activa-

tion of hypothalamic-pituitary-interrenal axis may 

cause higher blood cortisol levels, which can hamper 

fish defenses against pathogens (Ellis, 1981; Tort, 
2011). 

The recent interests in fish immunology came along 

with environmental problems resulting from intensi-

fication of farming systems. Moreover, teleost fish are 

in an interesting evolutionary position regarding 

immunological development, thus sprouting the current 

use of many species as animal models in immunology 

studies (Whyte, 2007). Immunologic response in 

laboratory fish may be studied through the modulation 

of the immune system. The main in vivo models used 

in immunological studies are: stimulation of immune 

response, by injection or administration of immunos-

timulant molecules in the diet (Anderson, 1992; 

Siwicki et al., 1998; Sakai, 1999; Nayak, 2010; Hai, 

2015); induction of inflammation by pathogens, 
antigens or inflammatory agents (Russell et al., 2006;  
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Novoa et al., 2010; Novoa & Figueras, 2012); induction 

of immunosuppression by chronic stress (Yin et al., 
1995; Tort et al., 1996; Sadhu et al., 2014); or 

administration of drugs by any ordinary process or via 

(Hickman-Davis et al., 2001; Walsh et al., 2002; 

Kumari & Sahoo, 2005; Cortes et al., 2013). This short 

trial aimed at evaluating existing protocols for 

inducement of immunosuppression by drugs in fish, 

adapted to slow release implant model, aiming the setup 

of controlled immunodeficiency state for further 

immunological studies. The pacu was used as an 

experimental model by being a native fish of interest to 

Latin America aquaculture. In addition, is a less 

domesticated species and more sensitive to stress. 

Juvenile pacu (65.6 ± 15.6 g) were randomly stocked in 

five, 60 L aquaria set up in an open, continuous water 

flow system, constant aeration and natural photoperiod 

(13.5 h), temperature 25 ± 1.2°C. Fish were anesthetized 

in benzocaine solution (0.1%), individually weighted 

and injected intraperitoneally (1.0 mL syringes; 

24G×3/4'' needles) with the tested solutions or 

suspensions (Table 1). Implants were obtained using 

liquefied partially hydrogenated vegetable fat from 

soybean oil (Bunge) (HVF) as vehicle, warmed to 
50°C, the minimum temperature necessary for melting,  
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Table 1. Treatments used in immunosupression implants 

in juvenile pacu. 
 

Treatment Dose 
Solution 

(SL)/Suspension (SP) 

Negative control (NC) X X 

Control (C) X Vehicle (HVF) 

Cyclophosphamide (CF) 200 mg kg-1 SP - 37.5 mg mL-1 

Dexamethasone (DX)     25 µg g-1 SL - 10 mg mL-1 

Hydrocortisone (HC)   100 µg g-1 SL - 20 mg mL-1 

 

 

and applied at 30°C, the nearest of the ambient 

temperature that was not too hot to harm the fish and, 

at the same time, still sufficient liquid for injection. 

This procedure resulted in a slow release implant, based 

on the methodology described by Specker et al. (1994). 

The immunosuppression drugs and dosage were 

cyclophosphamide (CYP), based on data reported by 

Kumari & Sahoo (2005) for Asian catfish (Clarias 
batrachus); dexamethasone (DX), based on data 

reported by Walsh et al. (2002) for clearnose skates 

(Raja eglanteria), and hydrocortisone (HC), based on 

data reported by Specker et al. (1994) for Atlantic 
salmon (Salmo salar). 

Blood samples were drawn by puncture of caudal 

vein (3.0 mL; heparinized syringes) from eight fish per 

treatment four days after administration of drugs. The 

sampling was performed on 4th day after implant 

injection based on the time necessary to achieve 

immunosuppression, based on Kumari & Sahoo (2005), 

which used multiple drug injection over the days. In 

this trial, it was performed as a single injection in slow 

release implant model. Sampled blood were dispensed 

in microtubes for leukocytes respiratory activity assay. 

All procedures were performed in accordance with the 

ethical principles of animal experimentation, adopted 

by the Conselho Nacional de Controle de Experi-
mentação Animal (CONCEA). 

Leukocytes respiratory activity assay was carried 

out according to Anderson & Siwicki (1995) protocol, 

after adaptation of Biller-Takahashi et al. (2013). Data 

were tested for normal distribution (Cramer-von Mises 

test) and homoscedasticity (Brown-Forsythe test), 

transformed to log10 base and submitted to one-way 

ANOVA and post-hoc analyses (Duncan’s multiple 

range test) to detect differences (α = 0.05) between 

treatments. 

Leukocytes respiratory activity of drug-treated 

groups did not differ from negative control group, 

whilst leukocytes respiratory activity of control group 

was smaller than that of the remaining treatments (Fig. 

1). A bacterial outbreak was registered four days after 

blood sampling with 100% mortality in groups treated 

with dexamethasone and hydrocortisone. No disease 

signals were registered for any other treatments. No mor- 

 

Figure 1. Leukocytes respiratory activity (NBT activity) 

(± SD) of pacu juveniles four days after treatments: 

Negative control (NC) without manipulation, control (C) 

with intraperitoneal injection of hydrogenated vegetal fat 

(HVF), cyclophosphamide suspension (CYP) and 
dexamethasone (DX) and hydrocortisone (HC) solutions 

in HVF. Capital letters indicate statistical difference 

(Duncan 0.05). 

 

tality or disease was recorded in the period between 
implant procedure and blood sampling. 

The capability of phagocytosis and oxidation by 

leukocytes, measured indirectly by NBT reduction 

assay is a reliable parameter for accessing the innate 

immune function of fish (Treves-Brown, 2000), 

tropical species included (Biller-Takahashi et al., 
2013). Therefore, the NBT activity was set as immuno-
logical status parameter. 

The slow release implant model was chosen for 

because elicits reduced handling of fish, i.e., requires a 

single injection, is less time-consuming and minute 

amount of drugs as compared to oral administration 

(Lovy et al., 2008). The negative control group was set 

as a baseline value for NBT activity in laboratory 

conditions, eliciting direct comparison with vehicle 

control and drug-implanted fish. Expectations were 

obtaining a HVF group with values near to NC, and 

lower values to CYP, DX and HC groups. However, an 

inverse response was registered. Low NBT activity in 

control group could be related to inflammatory 

response mechanism and a possible down-regulation of 
immune system.  

Inflammatory response is a physiological, protec-

tive process resulting from diseases or injuries. 

Although the inflammatory response varies to a great 

extent with the nature of the etiological agent, a general 
known pattern involves a well-established chain of 

events: vasodilation, increase of blood perfusion, 

migration of leukocytes to the inflammatory site, 

disease resolution and cleaning of cellular debris 
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(Suzuki & Iida, 1992). To prevent the extension of the 

inflammatory response beyond pathogen clearance 

ability and to avoid further damages to healthy tissues 

by chronic inflammation, the immune system releases 

inhibitory signs to down-regulate the immune response 

and reach homeostasis (Vigano et al., 2012). Mahta et 

al. (2014) reported out of in vitro and in vivo study with 

mice, de novo synthesis of steroid (pregnenolone) by 

lymphocytes T-helper (th2), resulting in reduction of 

cell proliferation and immunosuppression. Although 

the information regarding lymphocyte functions are 

scarce in teleost fish (Castro et al., 2011), Wang & 

Secombes (2013) inferred that the presence of 

lymphocytes T-helper in fish (salmonids) with different 

cell populations is similar to that found in mammals, 

and Wang et al. (2016) identified four interleunkin (IL-

4/13) genomic loci in the salmonids genome, and the 

cloning of three active genes, IL-4/13A, B1 and B2, 

cytokines related to Th2-type lymphocytes. It is 

therefore possible that self-regulating mechanisms of 

the immune system are, somehow, present also in 

teleost fish. Once the "implant factor" (HVF) is a 

common condition to control group and drug-treated 

fish, and an opposite reaction was found in this 

comparison, there is an evidence that CYP, DX and 

HC, although had no difference between each other, 

had effect over leukocytes respiratory activity when 

compared to control group, that only received the 
implant vehicle.  

During infection, hematopoietic tissue releases 

neutrophils in the blood stream; therefore, the increase 

of this cell type can be indicative of pathogen activity 

(Kindt et al., 2007). In addition, the production of 

bactericidal reactive oxygen species (ROS) by 

macrophages and neutrophils can indicate host-

pathogen interaction (Ellis, 2001). The increased 

leukocytes activity in DX- and HC-treated fish, added 

to bacteriosis and mortality after blood sampling stress, 

is a solid indication that the immune function, in this 

case, was reduced before the blood sampling at day four 

post implant, and the drug-treated fish had a latent 

infection by opportunistic pathogens, which advanced 

to a pathological condition after stress. Another 

indicative of this condition was the higher standard 

deviation in DX and HC treatments data, once there is 

an individual variation in this type of response. The 

standard deviation was 6 and 5% of leukocytes 

respiratory activity mean in DX and HC, respectively, 

against 2% of the same parameter in CYP group, in 

which was not recorded disease and mortality. 

Intraspecific, individual variation may occur in many 
physiological processes, including immune function 

(Crawford & Oleksiak, 2007). Studies with rainbow 

trout showed individual variation in head kidney 

lysozyme concentration (Grinde et al., 1988) and 

natural killer cells activity (Yoshinaga et al., 1994), 

which leads to the assumption that immune response of 

experimental fish during pathogen infection may vary 
as a result of individual predisposition. 

In what regards the CYP treatment, although similar 

results have already been reported with other drugs, no 

signals of disease were recorded and low individual 

variation was found. CYP is known to cause acute 

damage in blood-forming tissues and direct damage in 

lymphoid system (Hickman-Davis et al., 2001). It is 

thus possible that, in this protocol of administration, 

CYP affected the immune response blocking the down 

regulation of the inflammatory process against the 

implant, what can explains the difference to control 

group. 

In conclusion, the slow release implant model, using 

the tested drugs through HVF vehicle, was not efficient 

in reducing the immune response in a controlled 

manner. It is thus fair to state that more complex 

pharmacologic tests associated with pathogen-controlled 

experimental units should be used to transform the 

existing immunosuppression protocols in slow release 

implants. There is evidence of self, down-regulation in 

fish immune system when implanted only the vehicle, 

and that should be further investigated with the aid of 

more specific immune parameters, especially mole-
cular tools. 
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