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ABSTRACT. Artificial Neural Networks (ANN) are adjusted to predict monthly landings of anchovy 

(Engraulis ringens) and sardine (Sardinops sagax) in northern Chile (18°21’-24°00’S). Fishing effort (FE), 
landings and twelve environmental variables are considered from 1980 to 2012. External validation for the best 

models using all variables showed an R2 of 95% for anchovy and 99% for sardine, with an efficiency of 0.94 
and 0.96, respectively. The models were simplified by considering only FE and sea surface temperature (SST) 

from NOAA satellites (SST-NOAA). Using these variables, very similar fits were achieved, comparing with the 
previous models, maintaining their predictive capacity. Downscaled SST for A2 climate change scenario (2015-

2065) obtained by statistical regionalization from the Community Climate System Model (CCSM3) from 
National Center for Atmospheric Research (NCAR) and three FE scenarios (2010-2012 average, + 50% and -

50%), were used as inputs for ANN simplified models. For A2 future climate change scenario (2015-2065) using 
2010-2012 average FE as inputs, anchovy and sardine landings would increase 2.8% and 19.2% by 2065 

respectively. With FE variations (-50%), sardine landings show the highest increase (22.6%) by 2065 when FE 
is decreased. 
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INTRODUCTION 

Total annual landings in Chile have averaged 5.4 

million ton over the last three decades (1983 to 2012), 

32% of which is represented by pelagic resources in the 

northern part of the country (18°21'-24°00’S). 

Industrial fishing in the area began in the 1950s with 

landings of Peruvian anchovy (Engraulis ringens), 

which increased, fluctuated and then fell strongly in 

1972-1973, remaining low until 1985, when they again 

began to fluctuate and increase, reaching new historic 

levels (SAG, 1950-1977; SERNAPESCA, 1978-2012). 

After the collapse of anchovy in 1972-73, the sardine 

became a targeted species (Sardinops sagax) with 

catches increasing until 1985, before falling notably 

and remaining low until the present. These species are 

affected by fishing effort, El Niño phenomena, 

fluctuations associated with regime change (Yáñez et 
al., 2001; Chávez et al., 2003; Alheit & Ñiquen, 2004) 

and climate change (Merino et al., 2012; Yáñez et al., 
2014). 

The most significant impact of climate change on 

the ecosystems that support the main fisheries are, 

among others, increased sea surface temperature (SST), 

the rise in sea level, increased CO2 concentrations, 

habitat compression due to changes in the oxygen 

concentration and the depth of the mixed layer, as well 

as effects on ecological interactions (Poloczanska et al., 
2007). Climate change can therefore affect regional 

systems such as the Humboldt Current System (Allison 

et al., 2009; Belkin, 2009; Frèon et al., 2009; Cheung 
et al., 2010; Aiken et al., 2011). 

Fishing shows different trends in response to 

changes that affect larval stages, reproduction, feeding 

and migration, as well as anthropic pressures. Climate 

variation has intermediary or phased effects on a 

regional and local level. Possible environmental 

changes, such as the increased SST, depth of the mixed 

layer and the thermocline, surge intensity and nutrient 

concentration mechanisms, though slight, can affect the 
food chain and therefore the abundance, distribution and 
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and availability of fish populations (Miller & 

Schneider, 2000). Climate change can also have 

impacts on the composition of a community and the 

performance of ecosystems (Hiddink & Hofstede, 
2008; Ling et al., 2008). 

The connection between variations in pelagic 
resources and environmental changes on different time 
and/or spatial scales allows predictions of landing 
characteristics, one of the main objectives of 
management of fisheries. Marine ecosystems, however, 
are constantly in a state of imbalance and are 
characterized by nonlinear relationships (Murdoch, 
1994; Stenseth et al., 2002). The use of artificial neural 
networks (ANNs) to model ecosystems began in the 
1990s, particularly for situations in which the data 
cannot be fit to classical statistical assumptions and in 
which it is precisely nonlinear relationships that 
predominate. ANNs behave better than linear models 
and have the capacity to generalize when new data are 
input (Lek et al., 1996; Lek & Guégan, 1999; Özesmi 
et al., 2006). Gutiérrez-Estrada et al. (2007) used 
nonlinear modeling with anchovy fishing in northern 
Chile, and the ANNs considered only monthly landings 
with a 6-month time lag. Later, Gutiérrez-Estrada et al. 
(2009) used an ecosystem approach to predict monthly 
landings of sardine in the same area, and Yáñez et al. 
(2010) used ANNs to predict the ecosystem 
characteristics of anchovy and sardine in northern 
Chile. Predictions based on environment/resource 
relations, including fishing effort in some cases, have 
been carried out under different climate change 
scenarios (Hare et al., 2000; Lindegren et al., 2010; 
Andonegi et al., 2011; Muhling et al., 2011; Brochier 
et al., 2013; Yáñez et al., 2014). 

Given the importance of pelagic fishing in northern 
Chile, this study analyzes a modelling of anchovy and 
sardine landing predictions up to 2065 using ANNs 
models under a climate change scenario. This 
multivariate approach considers the monthly catches of 
anchovy and sardine, local and global environmental 
variables and fishing effort for the period 1980-2012. 

MATERIALS AND METHODS 

The study zone comprises the area covered by the 
industrial seine fishing fleet that operates in northern 
Chile (18°21’-24°00’S) from the coast to 73°W. The 
analyzed data includes environmental and fishing data 
for the 1980-2012 period for anchovy and sardine. 
Table 1 shows a description of each variable considered 
for analysis. 

Artificial neural networks 

Originally described by McCulloch & Pitts (1943), 

ANNs are mathematical models inspired by the neural 

architecture of the biological nervous systems (Hebb, 

1949; Rosenblatt, 1958). There are various applications 

ranging from identification, optimization or regression, 

prediction and classification, where they are efficiently 

able to find patterns through data, in some cases more 

than conventional models (Lek et al., 1996; Lek & 

Guégan, 1999; Allende et al., 2002; Suryanarayana et 
al., 2008). 

There is a broad spectrum of ANNs architectures, 

the most widely studied and used structures are 

multilayer feed forward networks or multilayer 

perceptrons (Rumelhart et al., 1986; Allende et al., 

2002). A schematic outline of the structure of an ANN 

of those characteristics is shown below (Fig. 1). 

Figure 1 shows a three-layer ANN, with q, n and s 

neurons in the input layer, hidden layer and output 

layer, respectively. There are weight vectors, Wji y Wkj, 

corresponding to the connections between the neurons 

of the input layer and the hidden layer, and between the 

hidden layer and the output layer, respectively. Each 

neuron j receives signals from each of the neurons i of 

the anterior layer. Associated with each signal xi, there 

is a weight Wji. The received effective signal Ij of 

neuron j is the weighted sum of all signals, that is: 

                                 𝐼𝑗 = ∑ 𝑥𝑖𝑊𝑗𝑖
𝑔
𝑖=1  

On the effective signal, a transfer function (or 

activation function) Ψ is applied to produce the output 
signal yi of neuron j: 

𝑌 = 𝛽0 +∑𝛾𝑘Ψ(𝑥
𝑇 . 𝛽𝑘 + 𝑣𝑘) + 𝜀

𝑟

𝑘=1

 

where x is a p-dimensional vector of explanatory 

variables, the 𝛽𝑘 s are projected vectors and 𝑣𝑘 

represents changes in the argument of the sigmoidal 

function Ψ  to locate the vectors projected in the 

indicated place. There are several transfer functions, 

associated with different objectives and expected 

results (Gardner & Dorling, 1998; Özesmi et al., 2006). 

In this study the logarithmic sigmoidal function is used 

as a transfer function: 

Ψ(𝑥) = Ψ𝑣,𝛽(𝑥) =
1

1+𝑒(𝑣+𝑥
𝑇.𝛽)

 

To determine the value of the weights, a process 

called training or learning takes place. The training 

defines the interconnections between neurons 

(weights), from vectors of known inputs and outputs 

(data or training patterns). It is an iterative process 

based on a convergence method of error. There are 

several methods of training, one of the most used is the 

backpropagation algorithm (Rumelhart et al., 1986). 

Lek et al. (1996), present a scheme for the backpro-
pagation algorithm: 
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Table 1. Variable description for the study. 

 

Variable  Description 

AT Air Temperature from Antofagasta coastal oceanographic station 

SST Sea Surface Temperature from Antofagasta coastal oceanographic station 

SST-NOAA Sea Surface Temperature measured via NOAA satellite  

TI Turbulence Index from Antofagasta coastal oceanographic station 

ET Ekman Transport from Antofagasta coastal oceanographic station 

MSL Mean Sea Level from Antofagasta coastal oceanographic station 
PDO Pacific Decadal Oscillation index 

SSTNIÑO 1+2 Climatic Index in the Niño 12 area 

SSTNIÑO 3+4 Climatic Index in the Niño 34 area 

SOI Southern Oscillation Index 

CTI Cold Tongue Index 

AAO Antarctic Oscillation index 

FE ANC Fishing effort for anchovy fishery 

FE SAR Fishing effort for sardine fishery 

DESANC Anchovy landings in northern Chile 

DESSAR Sardine landings in northern Chile 

 

 

Figure 1. Representative scheme of a feedforward ANN. 

 

1. Initialize the number of hidden neurons. 

2. Initialize the maximum number of iterations and the 

learning rate 𝜂. Start all weights and thresholds with 

small random numbers. Thresholds are weights with 
corresponding inputs always equal to 1. 

3. For each training vector (input 𝑋𝑞 = (𝑥1, 𝑥2, . . . , 𝑥𝑞), 
outputs Y) repeat steps 4-7. 

4. Present the vector of inputs in the input neurons and 
the outputs in the output neurons. 

5. Compute the inputs to the neurons of the hidden 

layer: 𝑎𝑗
ℎ = ∑ 𝑊𝑖𝑗

ℎ𝑥𝑖
𝑛
𝑖=1 . Calculate the output of the 

hidden layer neurons: 𝑥𝑗
ℎ = 𝑓(𝑎𝑗

ℎ) = 1

1+𝑒
−𝑎𝑗

ℎ . 

Compute the inputs to the neurons of the output 

layer: 𝑎𝑘 = ∑ 𝑊𝑗𝑘𝑥𝑗
ℎ𝑠

𝑗=1  and the corresponding 

outputs: �̂� = 𝑓(𝑎𝑘) =
1

1+𝑒−𝑎𝑘
. Note that 𝑘 = 1 and 

�̂�𝑘 = �̂�, s is the number of neurons in the hidden 
layer. 
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6. Compute the error terms of the output neurons: 

𝛿𝑘 = (𝑌 − �̂�)𝑓′(𝑎𝑘)  and for the neurons of the 

output layer: 𝛿𝑗
ℎ = 𝑓′(𝑎𝑗

ℎ)∑ 𝛿𝑘𝑊𝑗𝑘𝑘 . 

7. Update the weights in the output layer: 𝑊𝑗𝑘(𝑡 +

1) = 𝑊𝑗𝑘(𝑡) + 𝜂𝛿𝑘𝑥𝑗
ℎ  and in the hidden layer: 

𝑊𝑖𝑗(𝑡 + 1) = 𝑊𝑖𝑗(𝑡) + 𝜂𝛿𝑗
ℎ𝑥𝑖. 

As long as the estimated errors are greater than the 

predetermined threshold or the number of iterations is 

less than the number of predetermined iterations, repeat 
steps 4-7.  

A detailed description of multilayer perceptrons 

ANNs performance can be found in Tsoukalas & Uhrig 

(1996), Allende et al. (2002) and Gutiérrez-Estrada et 

al. (2008). Moreover, one of the most common 

problems when training neural networks is over 

training or memorization. It is normal for the learning 

error to decrease as the training is performed. However, 

the network may be adjusting noise to the weights 

estimate. In order to avoid this problem, in this work, 

an internal validation was used that iteratively monitors 

and evaluates the error, when it begins to increase, the 

training is stopped and the weights are saved and used 

in the external validation phase (Tsoukalas & Uhrig, 

1996). 

Data sources 

The monthly landings statistics (in ton) and the fishing 

effort (m3 of fleet capacity, FC) of the industrial seine 

fishing fleet for the period 1980-2012 are obtained from 

the State Monitoring Program of the Principal National 

Fisheries, which is conducted annually by the Instituto 

de Fomento Pesquero (IFOP). The environmental data 

are in the form of monthly averages of five local 

variables (air temperature, sea surface temperature, 

mean sea level, turbulence index and Ekman transport) 

recorded at weather and oceanographic stations located 

on the coast of Antofagasta (23°26’S). SST in the study 

zone were measured by NOAA satellites (SST-NOAA) 

and six global variables (Pacific decadal oscillation, 

southern oscillation index, SST in area Niño 1+2, SST 

in area Niño 3+4, cold tongue index and Antarctic 

oscillation index) were obtained from freely available 

reports written by global climate centers (www.cpc. 

ncep.noaa.gov/data/indices). The Ekman transport 

(Bakun et al., 1974) and turbulence index (Elsberry & 

Garwood, 1978) were estimated using wind speed and 

direction data from the coastal weather station at 

Antofagasta. The data of these variables are available 

on the CLIPESCA website (http://www. clipesca.cl/).  

The fishing and environmental data were analyzed 

to determine which variables to include in the ANNs 

models. First, any strongly correlated variables were 

excluded from the analysis in order to avoid 

multicollinearity between predictor variables, which in 

the case of ANNs can be less parsimonious and can 

result in a non optimal input variables configuration 

that could lead into bad training performance, therefore, 

poor validation results. Then, a principal component 

analysis was then conducted to visualize the level of 

representation of each variable on the main axes (Yáñez 

& Barbieri, 1988); these are the variables that present 

an individual value that is higher than the average of the 

values generated by each factor (Hair et al., 2010). 

Finally, a linear cross-correlation analysis was perfor-

med for the selection of time lags in time series models 

based on a 95% confidence level (α = 0.05). To 

decrease high frequency noise and, thus, clearly 

identify trends, the data were smoothed out through the 

use of a moving average centred around three months 
of data (Freón et al., 2003).  

Down scaled projections for northern Chile and the 
period of 2015-2065 (Fig. 2) were used to predict 
climate change; they were obtained from the 
Community Climate System Model (CCSM) of the 
National Center for Atmospheric Research (NCAR) 
(https://gisclima-techange.ucar.edu/gis-data). The 
CCSM bases its projections on climate scenarios from 
the Intergovern-mental Panel on Climate Change 
(IPCC). The present study uses the A2 scenario, which 
has the highest temperature increase of all those 
proposed. 

Artificial neural networks modelling 

The ANN models included monthly landings, fishing 
effort and environmental variables with time lags for 
the period of 1980 to 2012 for anchovy and sardine. The 
monthly anchovy and sardine landings, fishing effort 
and environmental data were divided into three groups 
and selected at random; 60% was used to calibrate the 
network parameters, 20% for internal validation and 
20% for external validation. This random selection 
procedure has been used by several researchers 
(Makkearsorn et al., 2008; Gutiérrez-Estrada et al., 
2009; Yáñez et al., 2010, Naranjo et al., 2015). 
Monthly landing estimates for anchovy and sardine 
were the models output variables. 

The ANNs were tested with a hidden layer and by 
varying the number of nodes for each model depending 
on the number of input variables. The ANN that 
functioned best in the validation stage was then chosen, 
and 30 repetitions of the calibration process were 
performed for each ANN structure (Anctil & Rat, 2005; 
Pérez-Marín et al., 2006). Based on this number of 
repetitions, the chosen model was within the best 14% 
of all possible models with a 99% confidence level 
(Iyer & Rhinehart, 1999). The learning algorithm for 
calibration purposes and subsequent validation of the 
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Figure 2. Scaled SST projections for northern Chile and the period of 2015-2065. 

 

 

models was the supervised second-order Levenberg-

Marquardt algorithm (Shepherd, 1997), which is a 

variation on the backpropagation algorithm (Rumelhart 

et al., 1986) and is highly recommended (e.g., Tan & 
Van Cauwenberghe, 1999; Anctil & Rat, 2005; Özesmi 

et al., 2006; Suryanarayana et al., 2008). The software 

Statistica 7.0 was used to run the ANNs models. 

ANN model evaluation  

With a randomly selected data set (20%), the 

functioning of the ANNs was evaluated during the 

validation stage using the coefficient of determination 

(R2), the percentage standard error of prediction 

(%SEP) (Ventura et al., 1995), the coefficient of 

efficiency (E) (Nash & Sutcliffe, 1970; Kitanidis &  

Bras, 1980) and the average relative variance (ARV) 

(Griñó, 1992). These indices are not influenced by the 

range of variation of their elements and are used to 

identify to what extent the model is able to explain the 

total variation of the data. Similarly, the error can be 

quantified in terms of the units of the variable being 

estimated. These absolute error measurements included 

the root mean square (RMS). In order to accept the fit, 

the values of R2 and E must be close to one, and the 

values of %SEP and AVR must be near zero. The 

persistence index (PI) was also used to assess the 

models (Kitanidis & Bras, 1980). A PI value of one 

indicated a perfect fit between the estimated and 

observed values, whereas a zero value indicated that the 

model was no better than a “naïve” model which always 

gives the previous observation as the next prediction. A 

negative PI value indicated that the model was altering 

the original information and giving a level of function 
that was worse than a naïve model (Anctil & Rat, 2005). 

Model sensitivity analysis 

A sensitivity analysis was conducted to identify the 

most significant input variables. This analysis treats 

each input variable on the neural network as if it were 

unavailable in the model (Hunter et al., 2000). To 

evaluate the sensitivity of variable X, the network was 

executed with a set of test cases, and the resulting error 

was saved. The same network was then used again 

replacing the observed values of X with the estimated 

values by substituting the missing values, and the 

resulting error was again saved. Because information 

used by the network had been removed (i.e., one of the 

input variables), the level of error was greater. The 

basic measurement of sensitivity was the quotient 

between the network error without the input variable 

and the original error. If the value was less than or equal 

to one, adding or removing the variable did not have 

any significant effect. 

Future SST downscaling 

The SST future simulations come from the National 

Center for Atmospheric Research (NCAR) Community 

Climate System Model 3.0 (CCSM3), considering the 

high future CO2 emission scenario known as A2 (IPCC, 

2007). The change factor (CF) was applied because it 

is a relatively straightforward and popular statistical 

downscaling method for rapid impact assessment of 

climate change (Wilby & Wigley, 2000; Silva et al., 

2015). The CF method involves adjusting the observed 

monthly SST (SSTobs, m) obtained from MODIS 

climatology (2003-2013) by adding the interpolated 

anomaly (delta) or difference in monthly SST predicted 

by the global climate model (GCM) NCAR CCSM3 

(A2 scenario) until the 2065 horizon and the reference 
period. 

Landings forecasts 

The reduced ANNs models calibrated for the three 
fishing activity types were used to forecast landings. 

The averages of fishing effort, considering the last three 

years of each fishing activity (2010-2012 for anchovy 
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and 2003-2005 for sardine), were used as input values. 

In addition, downscaled SST predictions based on the 

A2 scenario on climate change (CC) from the IPCC 

were also used; these predictions were scaled to the area 
of northern Chile for the period of 2015-2065 (Fig. 2). 

In order to predict and identify the net climate 

change effect on the anchovy and sardine fisheries in 

northern Chile, SST predictions based on the A2 (2015-

2065) and the monthly fishing effort averages as 

constant with three fishing effort scenarios, higher, 

lower and normal fishing effort (averages + or - 50%) 

to 2065. 

RESULTS 

Correlations between variables and principal 
component analysis (PCA) 

Table 2 shows the results of the correlation matrix 

between the environmental variables for anchovy and 

sardine, in which it can be seen that the SST-NOAA is 

strongly correlated with Air Temperature (AT), SST 

and SSTNIÑO 1+2 (0.93, 0.91 and 0.74, respectively). 

The same occurs between Turbulence Index (TI) and 

Ekman Transport (ET) (0.92) and between SSTNIÑO 

3+4 and Southern Oscillation Index (SOI) (-0.66) and 

Cold Tongue Index (CTI) (0.83). 

PCA generates 12 factors that together contain 

100% of the total variance. The criterion used states that 

the chosen factors are those that have an individual 

value above the average of all values generated by all 

the factors. According to this criterion, factors 1, 2 and 

3 were chosen, accounting for 36%, 23% and 15% of 

the variance, respectively, and therefore totaling 74% 

of the total variance. 

The correlation matrix of each variable is then 

estimated using each factor, giving the highest values 

(Table 3). Finally, taking into account the results of the 

correlation matrix between the variables and the PCA 

for anchovy and sardine, the variables SST-NOAA, 
SSTNIÑO 3+4 and TI were preselected. 

Crossed correlations 

In accordance with the criteria in question, in order to 

ensure confidence in the anchovy figures, Figures 3 and 

4 give maximum values of 0, -12 and -26 months of lag 

(though the latter are quite low) and maximums of 0 

and -12 months to ensure confidence in the sardine 

figures. For the TI, maximums of -9, -16 and -28 

months of lag are considered for anchovy and 0, -12, -
24, -36 and -49 months for sardine. For the SSTNIÑO 

3+4 for anchovy, maximum lags of -3, -24, and -35 

months are considered, whereas for sardine the maxi-

mums are -8 and -38 months. For the SST-NOAA for 

anchovy, the maximum lags are -2, -14 and -26 months 
and for sardine, -5, -17, -28 and -40 months. 

ANN modelling 

For anchovy the model with all variables selected 

shows the best architecture with 12:12:1; i.e., 12 nodes 

on the input layer, 12 nodes on the hidden layer and 1 

node on the output layer. This model explains 95% of 

the variance and has an IP of 0.95, indicating a very 

good degree of fit. A slight level of dispersion between 

the observed and estimated series is seen in the SEP 

value of 16.05% and the RMS of 12,742 ton, though 

both are the lowest of the estimated values (Table 3). 

For sardine the best model has an architecture of 

132:17:1 and an explained variance of 99% with an IP 

of 98%; the SEP is 12.2% and the RMS is 10,158 ton 

(Table 4). Table 4 shows the configuration of both 

models, in terms of input variables and variables ranked 

with their respective lags. 

Despite the above, the simplified models consider 

only FE and SST-NOAA as the input variables, both of 

which are of particular importance in the aforemen-

tioned models (Table 5). The SST-NOAA can be 

forecast be considering the global warming predictions 

in different IPCC scenarios. Table 6 shows the results 

of the best simplified model for anchovy with an 

architecture of 12 nodes on the input layer, 12 to 12 

nodes on the hidden layer and 1 node on the output 

layer. This configuration explains 81% of the variance, 

with an IP of 0.89, indicating a good fit between the 

observed and estimated values. There is slight 

dispersion between the observed and estimated values, 

which is seen in the SEP of 36.62% and RMS of 21,18 

ton, where both of these values are the lowest. For 

sardine the best configuration of the simplified model 

is 13:17:1, with R2 = 99%, SEP = 19.41, IP = 96 and a 

RMS of 13.11 ton (Table 6). 

Table 7 shows the sensitivity analysis of the 

simplified models, in which the most notable result is 

the FE (t-0) for both fishing activities, though the FE is 

relatively more important for the sardine, which is 

likely due to the greater influence of the environment 

on anchovy. These simplified models are not greatly 

different from the model that was fit with all the chosen 

variables, as they lose practically no predictive 

capacity, particularly for sardine (Fig. 5). 

Downscaling of temperature 

Third-grade polynomial regressions were fitted to the 

SST-NOAA data for anchovy-sardine fishing areas 

showing a cooling trend in the last years. The latter 

could be related with interdecadal-scale variability  
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Table 2. Environmental variables correlation matrix. AT: Air Temperature, SST: Sea Surface Temperature, SST-NOAA: 

Satellite NOAA SST, MSL: Mean Sea Level, TI: Turbulence Index, ET: Ekman Transport, PDO: Pacific Decadal 
Oscillation, SSTNIÑO 1+2: SST in area Niño 1+2, SSTNIÑO 3+4: SST in area Niño 3+4, SOI: Southern Oscillation Index, 

CTI: Cold Tongue Index, AAO: Antarctic Oscillation Index. 

 

Enviromental variable AT SST 
SST- 

NOAA 
MSL TI ET PDO 

SSTNIÑO 
1+2 

SSTNIÑO 
3+4 

SOI CTI AAO 

AT 1                       

SST 0.96 1                     

SST-NOAA 0.93 0.91 1                   

MSL 0.37 0.38 0.38 1                 
TI 0.38 0.39 0.36 0.04 1               
ET 0.37 0.38 0.35 0.03 0.92 1             
PDO 0.11 0.18 0.21 0.24 0.16  0.12 1           

SSTNIÑO 1+2 0.68 0.69 0.74 0.43 -0.09 -0.1 0.31 1         

SSTNIÑO 3+4 -0.03 -0.01 0.04   0.3 -0.22 -0.25 0.43 0.42 1       
SOI -0.13 -0.14   -0.13 -0.28 -0.13 -0.1 -0.38    -0.22 -0.66 1     
CTI 0.15 0.16 0.15 0.35   0.12  0.09 0.43 0.33  0.83 -0.73 1   
AAO -0.04 -0.03   -0.02 -0.08 -0.12 -0.1 -0.13    -0.02 -0.19  0.18 -0.21 1 

 

 

Table 3. ACP factor versus variable correlation. In bold, 

absolute correlations higher than 0.7. 

 

Enviromental variable Factor 1 Factor 2 Factor 3 

AT 0.85 0.4 0.22 

SST 0.86 0.39 0.2 

SST-NOAA 0.86 0.36 0.24 

MSL 0.57 -0.21 0.17 

TI 0.42 0.5 -0.71 

ET 0.4 0.52 -0.7 

PDO 0.45 -0.38 -0.22 

SSTNIÑO 1+2 0.76 -0.13 0.52 

SSTNIÑO 3+4  0.39 -0.86 -0.02 

SOI -0.48 0.6 0.34 

CTI 0.55 -0.68 -0.29 

AAO -0.17 0.19 0.33 

 

(Yáñez et al., 2001; Chávez et al., 2003; Alheit & 
Ñiquen, 2004). This SST cooling trend would have 

started by early 80s and show a decrease of 0.2°C by 
decade (Falvey & Garreaud, 2009).  

Landing forecasts 

Figures 6 and 7 show anchovy and sardine landings 

projections, from 2015 to 2065, considering scaled SST 

for the A2 climate change scenario and average fishing 

effort with both increase and decrease in -50% and 

+50%, respectively. Anchovy showed less steep trends 

than sardine, while sardine show more variability. 

Table 8 show anchovy and sardine increases of 2.8% 
and 19.2%, respectively. With +50% FE, anchovy 

landings decrease by 1.2%. For -50% FE both anchovy 

and sardine landings increase. 

DISCUSSION 

This study was conducted in two stages. The first 

involved the calibration and validation of the models 

using an approach similar to that used in Yáñez et al. 

(2010), who modeled the abundance of anchovy and 

sardine in northern Chile using a multivariate method 

with ANNs. The second stage applies the work of 

Yáñez et al. (2014), who used a modelling approach to 

predict anchovy landings in northern Chile based on a 

linear increase in SSTs at Antofagasta, considering 

different climate change scenarios. 

The lags in SST-NOAA in the selected models are 

mainly in reference to two effects. The first effect is 

related to aspects of reproduction that particularly 

affect anchovy recruitment, which occurs at 5-6 months 

(Gil, 1975; Braun et al., 1995; Castillo et al., 2002) and 

therefore the age groups involved in the catch at 6 to 36 

months (Serra et al., 1979; Braun et al., 2005). This 

implies a lag of 14 and 26 months. The second effect, 

which is related to the availability of the species, is 

connected to the lag of 2 months (Plaza et al., 2008; 

Yáñez et al., 2010). The lags in SST-NOAA in the 

selected models for sardine suggest an effect on 

recruitment, in the case of lags, of 38-40 months, and 

on availability when considering lags of fewer months. 

This is in agreement with the conclusions of Yáñez et 

al. (2010), who associate an effect on availability with 

lags of less than 36 months, whereas lags above 36 

months are linked to environmental conditions for 

reproduction and recruitment, considering that after 

hatching, it takes 2 to 3 years for the species to be 

recruited (Serra & Tsukayama, 1988; Alheit & Ñiquen,  
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Figure 3. Non-linear cross correlation results for anchovy. 

 

 

Figure 4. Non-linear cross correlation results for sardine. 
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Table 4 Anchovy and sardine ANN models configuration (architecture) and accuracy measures with full set of the twelve 

variables. 

 

Species Architecture n Parameters 
Index of error 

R2 RMS %SEP E PI 

Anchovy 12:12:1 12 156 0.95 12,742 16.05 0.94 0.95 

Sardine 13:17:1 12 238 0.99 10,158 12.23 0.99 0.98 

Table 5. Full anchovy and sardine models variable ratios for sensitivity analysis. In bold, variables considered for reduced 

models. 

 

Ranking 
Anchoveta full model  Sardine full model 

Variable Ratio  Variable Ratio 

1 FE (t-0) 4.191  FE (t-0) 9.490 

2 SST-NOAA (t-26) 1.857  FE (t-12) 2.032 

3 SST-NOAA (t-2) 1.670  SST-NOAA (t-40) 1.987 

4 TI(t-28) 1.616  SST-NOAA (t-28) 1.772 

5 TI(t-16) 1.597  TI (t-49) 1.733 

6 TI(t-9) 1.388  TI (t-24) 1.537 

7 FE (t-12) 1.387  SSTNIÑO 3+4 (t-8) 1.447 

8 SST-NOAA(t-14) 1.360  TI (t-0) 1.412 

9 FE(t-26) 1.353  TI (t-12) 1.369 

10 SSTNIÑO 3+4(t-3) 1.326  TI (t-36) 1.365 

11 SSTNIÑO 3+4(t-24) 1.321  SST-NOAA (t-5) 1.288 

12 SSTNIÑO 3+4(t-35) 1.297  SST-NOAA (t-17) 1.236 

13 
  

 SSTNIÑO 3+4 (t-38) 1.200 

 

Table 6. Error indexes for anchovy and sardine ANN models with reduced set of variables (fishing effort and SST-

NOAA). 

 

Species  Architecture n Parameters 
Index of error 

R2 RMS %SEP E PI 

Anchovy 12:12:1 3 21 0.81 21.18 36.62 0.78 0.89 

Sardine 13:17:1 7 49 0.99 13.11 19.41 0.98 0.96 

 

Table 7. Reduced anchovy and sardine model variable ratios for sensitivity analysis. 

Ranking 
Anchovy reduced model  Sardine reduced model 

Variable Ratio  Variable Ratio 

1 FE (t-0) 1.954  FE (t-0) 7.740 

2 SST-NOAA-N (t-14) 1.618  SST-NOAA (t-28) 1.705 

3 SST-NOAA-N (t-26) 1.222  SST-NOAA (t-40) 1.536 

4 FE (t-26) 1.128  SST-NOAA (t-17) 1.265 

5 SST-NOAA-N (t-2) 1.089  FE (t-12) 1.156 

6 FE (t-12) 1.063  SST-NOAA (t-5) 1.065 

 

2004). It is important to also note that environmental 

conditions may be influenced by pre-recruits, favoring 

(or decreasing) landings with a lag of more than 36 
months. 

In addition, the sensitivity analysis clearly shows 

the importance of fishing effort as an explanatory 

variable for landings of the species in question, 

particularly in the case of sardine. For the sardine 

landings forecasts, the values of fishing effort used in 

the prediction are very low, due to the negative 

situation of the species during the latter years of 

analisys for sardine (2003-2005; SERNAPESCA, 

1978-2012), whereas more intermediate values are used 
for anchovy. These values remain constant in the 

predictions in order to estimate the net effect of climate 

change on future landings of these resources. 
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Figure 5. ANN model validation process for a) anchovy, and b) sardine. 

 

 

Table 8. Anchovy and sardine landings projection results 

under three fishing effort scenarios (+50%, mean and -

50%).  

 

Species 
Fishing effort scenarios 

+50% Mean -50% 

Anchovy -1.2% 2.8% 12.2% 

Sardine 16.9% 19.2% 22.6% 

 

According to the results for the climate change 

predictions, the decrease in landings, of approximately 

6% for anchovy and less for sardine, may be because 

climate change will not be that significant on the 

Chilean coastline (Fig. 3). In effect, the spectrum of 

temperatures the pelagic species inhabit is wider than 

shown in this study as an effect of climate change when 

scaling the SST in northern Chile (Bertrand et al., 2008, 

2011; Brochier et al., 2013). The anchovy is found at 

temperatures between 16 and 23°C in summer and 10 

to 18°C in winter (Yáñez, 1998), whereas the sardine is 

found below a depth of 30 m and between 16 and 20°C 

in summer, and in winter at depths of 20-70 m and 
between 14 and 17°C (Castillo & Guzmán, 1985). 

The results are also in agreement with those 

obtained by Merino et al. (2012), who estimated a 

decrease of 3% in pelagic fish catches in Chile for 2050, 

with a prediction based on temperature and scaled 

primary productivity in biochemical and ecological 

models in different Exclusive Economic Zones (EEZ), 

including the Humboldt Current System (HCS). 

However, Falvey & Garreaud (2009) forecast a 

decrease in SSTs, which may imply increases in 

anchovy landings in northern Chile (Yáñez et al., 
2014). 

The results of these predictions provide relevant 

information on the possible impact on landings of both 

fish species in the face of climate change. Yáñez et al. 
(2008) suggest that anchovy landings in northern Chile 

are an indicator of the abundance of this species, as they 

show inter-decadal, inter-annual and inter-seasonal 

fluctuations which may be directly related to the level 

of abundance of the species. For sardine, the same  
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Figure 6. A2 SST and FE scenarios landings projections for anchovy. 

 

 

Figure 7. A2 SST and FE scenarios landings projections for sardine. 

 

 

authors suggest the Catch Per Unit Effort (CPUE) as an 

abundance index, whereas, according to Yáñez (1998), 

there is strong correlation between landings, CPUE and 

the abundance of this resource.  

The approach implemented in this work, considers 

a monthly temporal-based ANN modelling process, 

working as input-output black box approaches, with 

similar results as a global production model, which 

consider fishing effort and an environmental variable as 

inputs, thus, the northern zone of Chile is considered as 

one pixel. However, as stated by several authors, there 

is evidence of impacts on distribution, species 

composition and seasonality in the Humboldt Current 

System (Cury et al., 2000; Chavez et al., 2003; 

Brander, 2010). Cheung et al. (2010), indicate that 

climate change would impact in a redistribution of total 

catch by Economic Exclusive Zones (EEZ), in the case 

of Chile’s EEZ, there would be an estimated 6%-13% 

decline in total fisheries catches possibly due to a shift 

in the lower-latitude range boundary of many Antarctic 

species, resulting in a loss of catch potential and, as 

species move offshore to colder refuges as the ocean 

warms up, catch potential also shifts to offshore regions 

from coastal areas, which is the case of anchovy and 

sardine fisheries in northern Chile. Additionally, since 

climate change is more complex than a SST increase, it 

acknowledges the need for including a more integrated 

analisys, while anchovy and sardine show changes 

Year 

Year 
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associated with environmental variability, indicators 

such as abundance, trophodynamics are also affected 

by predators, competitors and parasites. Furthermore, 

anchovy and sardine abundance variations, linked to 

environmental changes in different spatial and temporal 

scales, open the possibility to study ecosystemic 

relationships, considering short, medium and long term 

changes (Zhou et al., 2009; Silva et al., 2015). In 

particular, the seasonal local component and the remote 

response from other variables, such as TI and 

SSTNIÑO 3+4, respectively, two variables which 

appear to be influential, according to the previous 

multivariate analisys should be considered for short-

term future work. 

Finally, there is a need to improve the scaling of the 

variables included in the prediction approach. We 

therefore recommend consideration of regional 

oceanographic models (ROMs) and the incorporation 
of a spatial component.    
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