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ABSTRACT. The spotted rose snapper Lutjanus guttatus is a fishery relevant species from the eastern Pacific
Ocean, with aquaculture potential. Species-specific genetic markers are needed for the genetic characterization
of wild and cultivated populations to help management strategies. Eighteen hypervariable microsatellites were
developed by Next Generation Sequencing and characterized in a wild population sample. Genetic diversity was
high (observed heterozygosity = 0.88 + 0.050; the number of alleles per locus = 13.4 + 1.3) and few loci departed
from the Hardy-Weinberg Equilibrium, leaving 14 loci potentially suitable for population genetic studies. A
reduced panel of five loci was tested in a cultivated stock to determine the parentage of progeny (embryonated
eggs; n = 413), to estimate the temporal contribution of each parental broodstock. The above resulted in the
successful assignment of 95.6% of the progeny to its parental couple, representing 17 out of the 24 possible
families. Two of the four females produced most of those progeny (97.3%). These females, which reproduced
throughout the season, did not spawn on consecutive days. The contribution of males was evenly distributed
during the season and occurred on successive days. Some microsatellites can be used in other lutjanids (L. peru,
L. argentiventris, and Hoplopagrus guentherii).

Keywords: Lutjanus guttatus; population genetics; embryonic eggs; genetic markers; parentage assessment;
reproductive performance

INTRODUCTION (Arellano-Martinez et al., 2001; Sarabia-Méndez et al.,
2010). Little is known regarding the spawning contri-

The spotted rose snapper, Lutjanus guttatus bution of females and males daily.
(Steindachner, 1869), is a demersal marine finfish with Microsatellite genetic markers are a necessary tool
a wide distribution range along the eastern Pacific for the genetic characterization of wild populations that
Ocean from the Gulf of California in Mexico to can be used, for example, to improve their mana-
Ecuador (Fischer et al., 1995). It is a valuable fishing gement, in rehabilitation programs, and stock identi-
resource in the region (Herrera-Ulloa et al., 2010; fication (Hallerman, 2003). They are also important in
Sarabia-Méndez et al., 2010; Correa-Herrera & aquaculture as they can be used to determine female
Jiménez-Segura, 2013), with a high potential for spawning frequency. Thus, the effective parental
aquaculture (Ibarra-Castro et al., 2013). Lutjanus guttatus contribution [e.g., red sea bream Pagrus major (Perez-
is a batch spawner with asynchronous ovarian develop- Enriquez et al., 1999), California yellowtail Seriola
ment during a long reproductive season comprising peak lalandi (Smith et al., 2015), gilthead seabream Sparus
spawning  periods i April, August and October aurata (Garcia-Fernandez et al., 2018)], which due
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the disproportion in male to female contributions, large
family size variance and null female spawners in the
broodstock can lead to the potential accumulation of
inbreeding within the hatchery (Blonk et al., 2009;
Domingos et al., 2014). Other markers, such as Single
Nucleotide Polymorphisms (SNPs), have shown relia-
ble results for parentage testing in aquaculture species
[e.g., shrimp (Perez-Enriquez & Max-Aguilar, 2016)].
However, for L. guttatus there is no previous genomic
information available.

The present study aimed to obtain a set of
microsatellite markers for future population genetic
studies of L. guttatus and to test a reduced panel to
estimate the temporal parental contribution in a
cultivated stock of the species.

MATERIALS AND METHODS

Biological material

Fin clips of 10 Lutjanus guttatus individuals were
collected in 2011 at the eastern coast of the Baja
California Peninsula, Mexico, and preserved in 70%
ethanol. Genomic DNA was obtained (Aljanabi &
Martinez, 1997), and a DNA mix was sent to the
Savannah River Ecology Laboratory, University of
Georgia, U.S.A., for microsatellite screening by Next
Generation Sequencing (Illumina library preparation
and sequencing, bioinformatics analysis and primer
design). A set of 48 primer pairs (tetra- and pentane-
cleotides) was tested in these 10 individuals. PCR was
done in volumes of 11 pL containing 1 pL. DNA as
template (20 ng pL™?), 1 x Taq Buffer, 1.5 mM MgCl,,
0.25 mM dNTPs, 0.4 uM of each forward and reverse
primers (Macrogen, Korea), 0.025 U pL?! Tagq
polymerase (Promega, UK), and Milli-Q water. PCR
thermal conditions (C1000 thermal cycler, Bio-Rad)
were: 94°C for 2 min; 30 cycles at 94°C for 45 s,
annealing temperature for 45 s, and 72°C for 1 min; then
a final extension at 72°C for 10 min. The annealing
temperature for each primer was calculated using the
formula Ta = 4(C+G) + 2(A+T) - 5. The PCR products
were separated on polyacrylamide gel electrophoresis
(5%, 7.5 M urea; 1800 V, 50 mA, and 50 W).
Fragments were visualized using Sybr-Gold within a
1% agarose matrix and scanned (FMBIOIII, Hitachi).

Genetic markers selection

A set of 18 microsatellite loci, showing reliable
amplification patterns, was selected for characteri-
zation on the same 10 individuals, and their sequences
(Macrogen) were deposited in GenBank (Table 1). PCR
reactions were done in 20 pL volumes with the use of
an M13 primer (5’-TGTAAAACGACGGCCAGT)

labeled with the fluorophores 6-FAM, VIC, NED or
PET at 1.6 uM, reverse primers at 1.6 uM, and forward
primers having an extension of the M13 sequence at the
5’-end at 0.4 uM (Schuelke, 2000) (Table 1). The rest
of the components were at the same concentrations as
above. The amplification conditions were the same as
above, but the final extension was set with eight
additional cycles of 94°C for 30 s, M13-annealing at
53°C for 45 s, and 72°C for 45 s. Two pL of PCR
products were added with 0.25 pL of LIZ500 Size
Standard (Applied Biosystems) and 9.75 pL de HiDi-
formamide, placed in a 96-well microplate and put into
the ABI 3130 automated DNA sequencer. The
genotypes were obtained using the software Gene
Mapper version 4.0 (Applied Biosystems).

Allele frequencies per locus were calculated with
the program Arlequin version 3.5 (Excoffier & Lischer,
2010), and used to estimate genetic diversity para-
meters [number of alleles per locus; observed (Ho) and
expected (He) heterozygosities] and Hardy-Weinberg
Equilibrium (HWE) (Exact test using a Markov chain:
50,000 dememorizations, 100,000 steps). The potential
presence of null alleles, stuttering, or allele drop-out
was assessed with the program Micro-Checker (Van-
Oosterhout et al., 2004).

Cross-amplification of microsatellites was tested in
three lutjanid species: red snapper Lutjanus peru
(Nichols & Murphy, 1922) (n = 5), yellow snapper
Lutjanus argentiventris (Peters, 1869) (n = 4), and
greenbar snapper Hoplopagrus guentherii (Gill, 1862)
(n=1), all collected from the Gulf of California.

Broodstock management

The 10 individuals of L. guttatus described in the
previous section (six males, four females) were kept in
a maturation tank equipped with an external spawn
collector, at the Centro Interdisciplinario de Ciencias
Marinas-IPN, México. They were fed daily at satiation
with sardines and squid. During the reproductive
season of 2011 (June-October), spontaneous spawning
was obtained. For each collected spawn, viable
embryonated eggs were separated from dead eggs by
buoyancy. A fraction of those was collected and
preserved in 1.5 mL microcentrifugation tubes with
70% ethanol. From a total of 36 spawns, the
embryonated eggs from 14 spawning events were
sampled for DNA analysis (12, 13, 14 July; 4, 14, 22
August; 8, 9, 10 September; 14, 15, 16, 20, 21 October).

The embryonated eggs were individually separated
using a microscope (Olympus CX31), and only those
from the late gastrula developmental stage were
selected, as earlier stages failed to amplify PCR
products adequately. Remnants of ethanol were evapo-
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rated, and embryonated eggs were put into individual
tubes with 18 puL of MilliQ water. They were preserved
at -20°C. For DNA release, embryonated eggs were
unfrozen, smashed with a plastic pestle and centrifuged
at 1,533 g for 1 min. The supernatant was used as a
DNA template. A total of 32 embryonated eggs from
each of the 14 spawning events were used for

genotyping.

Parentage testing

Based on their polymorphism, allelic range, electro-
pherogram peak quality and the possibility of
multiplexing, five loci were selected for genotyping
(Table 1). The forward primer (without the M13
extension) from the microsatellite was labeled with a
fluorescent label at 5' (Thermo Fisher Scientific)
(6FAM-Lgut18, PET-Lgut2l, 6FAM-Lgut30, NED-
Lgut34 and VIC-Lgut39). For adults, PCR multiplex
reactions were conducted in 21 puLL volumes containing
1 uL DNA (20 ng uLY), 1 x Taq buffer, 1.5 mM MgCl.,
0.35 mM dNTPs, 0.3 pM of each primer and 0.07 U pL*
Taq polymerase. For embryonated eggs, PCR reactions
were done using the same quantities but in a volume of
23 puL with 3 pL of DNA. PCR thermal conditions were
as follows: 94°C for 2 min, 42 cycles of 94°C for 45 s,
60°C for 45 s and 72°C for 1 min, and a final extension
at 72°C for 10 min. Products were electrophoresed on
an ABI 3130 automated DNA sequencer. Alleles were
sized using the LIZ500 Size Standard (Applied
Biosystems) and read using GeneMapper 4.0 software
(Applied Biosystems).

The combined non-exclusion probability for the five
loci set was estimated by the program Cervus 3.0.7
(Kalinowski et al., 2007). Parentage analyses for each
of the 14 spawning events were performed by
probabilistic and direct exclusion approaches using
Cervus 3.0.7 (Kalinowski et al., 2007) and Vitassign
(Vandeputte et al., 2006), respectively, to estimate the
number of contributing males and females. Those
cases, in which the parentage assignment by Cervus and
Vitassign coincided. Still, there were some loci
showing mismatches; they were treated as putative
mutations either by the change in the number of repeats
or by null alleles. The mutation rate per locus was
calculated, dividing the number of mutations by twice
the number of genotypes in the progeny at each locus.
The mutation rate was also calculated for males and
females.

RESULTS
The 18 microsatellite loci showed reliable genotyping

patterns in the Lutjanus guttatus broodstock, resulting
in high genetic diversity (na = 13.4 £ 1.3; Ho =0.88 £

0.05; Table 1). Three loci departed from HWE (only
one after the Bonferroni correction) (Table 1), which
can be explained by the potential presence of null
alleles, rather than by stuttering or allele drop-out, as
indicated by the Micro-Checker analysis. Fourteen loci
are available to assess population genetic structure in
wild L. guttatus (N. Diaz-Viloria, unpublish. data), and
several loci are potentially useful for the other snapper
species (Table 1).

For parentage assignment, 413 embryonated eggs
were used. The combination of direct and probabilistic
(95% CL) exclusion methods resulted in 95.6% of the
progeny (n = 395) assigned to a single parental couple,
leaving 4.3% unassigned. Seventeen families (out of
24) were represented in the progeny (Table 2).

The reproductive season within the breeding tank
spanned from June to November, with a peak number
of spawns occurring in October. Most males (7A62-M,
1170-M, 1538-M and 2924-M) reproduced throughout
the season and during consecutive days (Fig. 1a). In
contrast, most of the progeny (n = 384; 97.2%) were
produced by only two of the four females (4B67-H and
4953-H), and spawning did not occur on consecutive
days (Fig. 1b), indicating that females (at least 4B67-
H) spawn every other day.

Unexpected genotypes were observed in several
families, resulting in a deviation from the expected
Mendelian proportions (Table 3). As it is unlikely that
these genotypes come from genotyping errors (the
sequencer sizing differences observed in four
duplicated samples was between 0-0.7 units in at least
four loci), they appear to be a consequence of both null
and mutated alleles. Considering a null allele as a
mutation event, the mutation rate per locus varied
between a maximum of 1.2x107? in Lgut2l to a
minimum of 7.7x10°% in Lgut34, for a mean of 4.5x1072,
Null-allele events were three times larger than changes
in the number of repeats. While all the mutations in
Lgut21 and Lgut39 were due to null alleles, there was a
combination of null alleles and base pairs gains in the
other loci (Table 3). In Lgutl8 and Lgut30, the most
common change was a gain in four base pairs
(equivalent to one microsatellite repeat). The mutation
rates were, on average, almost twice higher for females
than males (Table 4).

DISCUSSION

The usefulness of microsatellites as genetic markers for
parentage assignment has been demonstrated in more
than 20 cultivated fish species (Yue & Xia, 2014). The
capability of correct assignment is dependent on several
characteristics of the genetic markers, of which their



Spotted rose snapper genetic contribution

251

Table 2. The number of progenies assigned to each potential family in the spawning events of July to October, using the
probabilistic (95% confidence level) and direct exclusion methods.

Number of Number of
Female  Male G iviquals  Temale Male g iduals
1170 M 54 1170 M 61
1538 M 8 1538 M 46
2924 M 39 2924 M 30
4993 H 6700 M 14 4B67T_H 6720 M 8
7TA62_M 54 7A62_M 53
3C42_ M 2 3C42 M 15
1170 M 0 1170 M 0
1538 M 1 1538 M 0
2924 M 4 2924 M 1
2C30_H 6750 M 0 IFT0H 6720 M 0
7TA62_M 3 7A62_M 0
3C42_M 2 3C42_ M 0
Total number of individuals 395
Total number of families with progeny 17
1.0
0.9
0.8
207
£ 06 @3C42-M
g 05 B7A62-M
o 04 @1170-M
=8 82 m1538-M
0.1 @2924-M
0.0 1 m6720-M
Spawning date
go7
£ 06
g 05 m2C30-H
g 04 m4B67-H
e @4953-H
®IF70-H

Spawning date

Figure 1. The proportion of breeders contributing to progeny during the spawning events of July-October 2011. a) Males,

b) females.

variability is one of the most relevant (Vandeputte &
Haffray, 2014). The five high-variable microsatellites
selected (with a combined probability of non-exclusion

in the order of 10%) were enough to confidently
determine, by both exclusion methods, the parentage of
92% of the progeny from a relatively small Lutjanus
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Table 4. Number of genotypes per parent (progeny per parent x 5 loci), non-scored genotypes from progeny, number of

mutated and null alleles, and estimated mutation rate.

Parent ID Genotypes Non-scored Mutations  Null Mutatiop2 rate
per parent  progeny genotypes (x109)
Male 3C42-M 95 3 2 0 2.2
7TA62-M 550 7 6 2 1.5
1170-M 590 31 3 2 0.9
1538-M 275 2 5 0 1.8
2924-M 370 2 0 34 9.2
6720-M 110 0 3 0 2.7
Mean 331.7 7.5 3.2 6.3 3.1
Female oc30-H 50 0 1 6 14
4B67-H 1080 15 6 74 7.5
4953-H 855 28 6 4 1.2
IF70-H 5 2 0 0 0
Mean 497.5 11.3 3.3 21 5.7

guttatus broodstock, supporting the usefulness of this
reduced panel, for the assessment of multiple spawning
events. The use of new genetic markers, such as SNPs,
is an alternative for parentage testing in relevant
aquaculture such as shrimp (Perez-Enriquez & Max-
Aguilar, 2016), and oysters (Lapégue et al., 2014).
Routine genotyping platforms are available; however,
these types of platforms are not yet available for L.
guttatus. Other techniques (e.g., KASP, Tagman,
HRM) are not economically feasible for more than 50
SNPs.

The reproductive pattern of males, most of them
reproducing throughout the season and during
consecutive days, has also been observed in the
California yellowtail Seriola lalandi Valenciennes,
1833 (Smith et al., 2015). In wild L. guttatus females,
asynchronous development of the gonads and partial
spawning behavior has been described (Arellano-
Martinez et al., 2001). The overrepresentation of
females should be taken into account for hatchery
management as an unbalanced family size that can lead
to an increased inbreeding rate (Perez-Enriquez et al.,
1999; Garcia-Fernandez et al., 2018).

Parentage assessment within a day of a spawning
event by using the DNA extracted from fish
embryonated eggs is recommended using a mechanical
method rather than a chemical method as in other fish
species [e.g., gilthead seabream Sparus aurata (Garcia-
Fernandez et al.,, 2018); zebrafish Danio rerio
(Westerfield, 2007)]. However, the selection of em-
bryonated eggs posterior to gastrula for DNA analysis
is critical for PCR success, as similar results were
reported for the gilthead seabream (Garcia-Fernandez
etal., 2018).

Mutations and null alleles in microsatellites are a
common phenomenon resulting in failed assignments
(Ellegren, 2000). The mean mutation rate obtained in
our study (107 per locus per generation) is higher than
other fish species, such as the carp Cyprinus carpio
with 10* (Yue et al., 2007), or various salmonids with
102-10° (Shaikhaev & Zhivotovsky, 2014). Despite
the high mutation rate, five high-variable microsa-
tellites were enough to confidently determine, by direct
exclusion, the parentage of progeny from a relatively
small broodstock of the spotted rose snapper. For a
larger broodstock, the number of genetic markers can
be increased to minimize the non-exclusion probability
(in the order of magnitude of 10 in the present study),
using the remaining markers developed for the species
(Table 1).

The estimation of the contribution of males and
females of broodstocks kept in communal tanks is
relevant for the implementation of selective breeding
programs (Garcia-Fernandez et al., 2018). A more
intensive and extended in time genotyping that gives a
better genetic representation of the gene pool of the
selected broodstock has been suggested for the red sea
bream Pagrus major (Nugrohoa & Taniguchi, 2004)
and the barramundi Lates calcarifer (Domingos et al.,
2014). This information will also be important for the
definition of the breeding goal, not only if the plan is
focused on the improvement of reproductive traits, but
also for other characteristics (growth, stress resistance,
meat quality, others) (Gjedrem, 2012).

As an additional contribution, the genetic markers
panel will also be useful for genetic studies in wild
populations focused on their management in other
lutjanid species.
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