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ABSTRACT. While fishing discards and bycatch are worrisome for fisheries management, research has been
mainly focused on commercial or threatened species, while the ecosystem effects were largely neglected. In this
work, the effects of discard and fishing efforts on the structure and the functioning of the food web of the Rio
de la Plata (RdIP) were analyzed using mass balance and dynamic trophic modeling. Discard is consumed almost
entirely by several species with a large preference for it, producing mixed trophic impacts. The role of discard
on the global attributes of the RdIP ecosystem does not seem important, resulting in a low incidence in trophic
flows, growth, and development of the trophic web. Dynamic simulations showed a mixed response to variations
of discards, with some groups responding positively and others negatively. For example, a decrease in discards
would produce a slight decrease in the biomass of most functional groups, being more pronounced in the
predators of the system. Variations in biomass produced by discards are more sensitive under the assumption of
bottom-up ecosystem control than mixed control and to a lesser extent under top-down control. Our work
confirms a complex relationship between discards and ecosystem functioning, warning about the beneficial
result of discard reduction policies.
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INTRODUCTION Indeed, that non-target fishing can rise to 40% in

some fisheries (Cressey 2015), and the southwest

Discard and bycatch are the main problems produced
by marine fishing activities. Discard is considered the
portion of the catch that returned to the sea due to
economic, legal, or personal considerations. The inci-
dental catch is the retained catch of non-target species
captured. At the same time, the term bycatch refers to
the summation of discard and incidental catch
(Alverson et al. 1994).

Discarding is a common practice in most fisheries
worldwide, reaching more than a third of the world's
catch (Davies et al. 2009, Zeller et al. 2018). In the late
80s, 27 million tons of fish discards were produced
annually (Atar & Malal 2010). However, after major
efforts to reduce discard practices, the most recent
estimates mention a total volume of 10 million tons
(Gilman et al. 2020).
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Atlantic (FAO Area 41) had the highest mean discard
rate, contributing 7% of the total annual global discards
(Pérez-Roda 2019).

Since the beginning of the fishing activity, discards
and incidental catches have been generated mainly due
to the lack of knowledge of the species' potential for
consumption or the inability to select the target species
(Hall 1999, Kelleher 2005). Trawl fishing fleets (with
less selectivity) cause high impacts across all trophic
levels. In contrast, artisanal and recreational fishing
causes specific effects that generally affect a minimal
number of species (Defeo et al. 2011, Comesafia &
Nogueira 2013, Lercari et al. 2015).

Fishing discard is considered morally wrong on
many occasions due to the waste of millions of tons of
protein thrown into the sea (Hall et al. 2000, Hall &
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Mainprize 2005). It may have strong socio-economic
implications and cause negative consequences for the
harvested stock and the ecosystem organizational level
(Harrington et al. 2005, Tsagarakis et al. 2013, Costello
et al. 2020). These negative consequences may reduce
fish stocks and alterations in the flow of energy in
trophic networks (Tudela 2004, Bellido et al. 2011,
Hilborn et al. 2020). In addition, discarding produces
changes in the diversity and abundance of species
(Bozzano & Sarda 2002, Newsome et al. 2014), with
direct consequences on the fitness of individuals, the
dynamics and composition of the communities, and
their interactions. (Mallol 2005, Fondo et al. 2015).

Decades ago, discarding and incidental fishing was
not seen as a relevant problem since it was considered
inevitable in the fishing process (Mallol 2005,
Arreguin-Sanchez 2011). However, the management
objectives currently tend to promote more selective,
participatory, and co-managed fishing activities to
achieve greater effectiveness and efficiency, favoring
discards reduction and bycatch (Carranza & Horta
2008, Gelcich et al. 2009, FAO 2020).

The global trend in fisheries is geared toward
implementing ecosystem management (EM), an
approach that considers social, political, and economic
factors, the technologies used, and the impact they
cause on the habitat (Defeo 2015, Sanchirico &
Essington 2021). Changing discards rates will
potentially impact organisms throughout the food web
(Bozzano & Sarda 2002, Bicknell et al. 2013, Garcia et
al. 2015). Therefore, the reduction of discards is a
primary objective of this management strategy, and the
efforts to achieve it have been diverse (Valeiras 2015,
Gasco et al. 2018). However, management measures
focused on reducing discards "as much as possible”
must first consider the trade-offs at socio-economic and
ecosystem levels (Heath et al. 2014). Then, the analysis
of the effects of fisheries discards should be an integral
part of EM. This approach requires evaluations of direct
and indirect effects of an activity on individual
components, global properties, and the sustainability of
ecosystem services (Christensen & Walters 2000, Raby
et al. 2011, Fondo et al. 2015).

Models and simulations constitute a common tool
used to analyze fisheries management strategies. Its
implementation is a complex process; however, there is
a large number of articles that apply multispecies
modeling to consider the multiple users of the marine
ecosystem, seeking to represent the complexity of
interactions of natural and anthropogenic origin into an
EM framework (Milessi et al. 2010, Arreguin-Sanchez
etal. 2015, Vogler et al. 2015). In particular, ecosystem
models hypothesize how ecosystems function expli-
citly through computational algorithms, incorporating

ecological, social, and economic variables and proce-
sses (Hollowed et al. 2000, Christensen & Pauly 2004,
Sturludottir 2018).

In this context, the objective of the present work is
to analyze the possible effects that changes in discard
rates and fishing efforts would produce on the
ecosystem structure and functioning of the estuary of
the Rio de la Plata and the contiguous Atlantic oceanic
shelf.

MATERIALS AND METHODS

Study area

The RdIP estuary is located on the east coast of South
America, covering an area of 36x10% km?, forming the
second-largest basin on the continent (Framifian et al.
1999). It is one of the largest estuarine environments on
Earth, with high productivity, supporting artisanal and
industrial fisheries of Uruguay and Argentina (Acha et
al. 2008). Following geographical, environmental, and
institutional criteria (Lercari et al. 2009), the study area
comprises the outer and middle zone of the RdIP and
the adjacent Atlantic coastal platform, with a surface of
70,500 km?, delimited on the southeast by the 50 m
isobath and by the Uruguay-Brazil border on the
northeast (Fig. 1).

Fisheries activities and analysis strategy

The fisheries in the study area are carried out by
Uruguayan and Argentine small-scale (artisanal) and
industrial fleets operating up to 50 m deep, where
Cynoscion guatucupa and Micropogonias furnieri are
the main fishing targets (Rey 2010, Marin et al. 2020).
There were considered four fishing fleets belonging to
Uruguay and Argentina, grouped according to the
location of their base port; these fleets operate mainly
in the study area.

The fishing fleets considered were: North Buenos
Aires artisanal coastal fleet (AA): about 200 artisanal
vessels and approximately 10 semi-industrial vessels
were considered. They operate mainly on the north
coast of the province of Buenos Aires. The information
corresponding to catches by fleet comes from Carroza
et al. (2004), Colautti & Suquele (2006), and data
provided by the Secretary of Fisheries of the province
of Buenos Aires (www.sagpya.mecon.gov.ar). Mar del
Plata coastal fleet (Al): 14 vessels that have a port in
the study area were included (Contin & Colautti 2008).
The demersal catch data by species and ports are taken
from Carroza et al. (2001). Uruguayan industrial fleet
(UI): this fleet operates almost in the entire study area;
it is composed mainly of bottom trawling fishing com-
prising 33 vessels. The catch data for the period 1999
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Figure 1. Rio de la Plata and its adjacent platform map. The shadow zone represents the modeled area; the stars show the

main fishing ports.

and 2000 come from official data from DINARA
(www.dinara.org.uy), and for the period 2000-2001
come from the fisheries sector report (DINARA 2003).
Uruguayan artisan fleet (UA): this small-scale fleet
includes 315 vessels with activity comprised 7 nm
away from the coast. Data from 48 fishing ports along
the coast were used. The catch information is relative
to 2002 taken from official DINARA data (www.
dinara.gub.uy).

The most important species are mainly whitemouth
croakers (M. furnieri), Brazilian codling (Urophycis
brasiliensis) and stripped weakfish (C. guatucupa), the
argentine hake (Merluccius hubbsi), and argentine
shortfin squid (lllex argentinus) (Rey et al. 2000,
Milessi et al. 2005, Horta & Defeo 2012). These species
have shown a decreasing trend in their yields since the
'80s, showing signs of overexploitation (Pin & Defeo
2000, Defeo et al. 2011).

Trophic models: representation of biomass flows in
the ecosystem

The Ecopath approach represents an ecosystem's
energy and biomass fluxes (Pauly et al. 2000,
Christensen et al. 2008). The mass balance state model

is made up of a set of coupled linear equations (Eq. 1)
that represent the production of each of the functional
groups in the ecosystem and describe the balance
between the increase in biomass from production and
the losses from predation and exploitation, including
fishing (Polovina 1984, Christensen & Pauly 2004):

Bi* (P/B)i*EEi = Yi. ¥, Bj (B/Q)iDCji (Eq. 1)

where Bi is the functional group i biomass in a given
period, for i = 1...n functional groups; (P/B) i is the
production/biomass ratio for i (Ricker 1946); EEi is the
ecotrophic efficiency (fraction of the production used
in the system); Yi is the fishing yield for i; Bj is the
biomass of predator j; (Q / B) j is the consumption/
biomass ratio of group j, and DCiji is the fraction of i in
j's diet. The static Ecopath model is the base for
dynamic simulations using the Ecosim model (see
below).

This study relies on a previously implemented
Ecopath-Ecosim trophic model of the studied area
(Lercari et al. 2009, 2014), representing the ecosystem
in the period (2000-2006). The basic structure of this
model has been used with different modifications to
address diverse questions (Bergamino et al. 2012,
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Vogler et al. 2015). On this occasion, as we specifically
seek to analyze the role of discards, modifications to the
basic model were made, creating a new group of
detritus (discards) to receive the flow of discards
produced by the fleet. Information on catches and
discard was updated with recent estimates for the study
area (Lorenzo et al. 2015). Information by functional
groups that make up the structure of the trophic model
is shown in Table 1, along with catch and discards
estimates for each of the five defined fleets. These
represent approximately 10% of the catch in the four
fleets considered. Because there is no updated
information, the discard values assigned to each fleet
were estimated from the percentages calculated by Rey
et al. (2000) and subsequently evaluated by Lorenzo et
al. (2015). For this research, it is assumed that the
discard of the artisanal fleet is negligible compared to
the values of the industrial fleets. Finally, it is
considered that all the organisms discarded have a
mortality rate of 100%, even when they are returned to
the sea and have a chance of survival. In the Ecopath
model, discards are assigned to a specific trophic group
of detritus. Primary input data (B, P/B, and Q/B),
including the diet assignation matrix, is provided as
Supplementary Files (Tables 1A-2A). Detailed infor-
mation on the input data sources of the mass balanced
model can be found in (Lercari et al. 2014, Vogler et al.
2015).

Mass balance model analysis

Electivity indices measure food utilization about their
abundance or availability in the environment. First, the
consumption of discard by the diverse trophic groups
was assessed, and the electivity of each group for
discard was estimated. The electivity index provided by
Ecopath (Ivlev 1961) describes a consumer's preference
for their prey (in this case, discards). Its scale ranges
from -1, which represents the total evasion of the prey,
to 1, total preference for the prey (lvlev 1961).

Trophic structure (trophic levels and biomass of
each group) was analyzed, and discards were contex-
tualized. The effects of discard on trophic interactions
were evaluated using mixed trophic impacts analysis
(Ulanowicz & Puccia 1990). This method makes it
possible to observe the type of impact (positive or
negative) that each functional group has on the other
ecosystem components. Regarding the effects at
ecosystem level attributes, the contribution of discards
to the total flows of the system (T) and their
organization in terms of ascendency, overhead, and
development capacity was estimated. Ascendency (A)
measures system information derived from information
theory (Ulanowicz 1986). It quantifies the activity level
and the degree of organization, a key index that

characterizes the system's development and maturity
(Monaco & Ulanowicz 1997). Because ecosystems
cannot grow indefinitely, there is a limit to this growth
called the development capacity (DC) (Arreguin-
Sanchez et al. 2002). Ecosystems maintain a positive
difference between development capacity and the
ascendency called overhead. Indirect flows provide
limits on the increase in the ascendency and reflect the
"reserve strength" of the system, from where they can
satisfy unexpected shocks (Ulanowicz 1986). A system
with low ascendency and sufficient overhead can
respond effectively to the demands of its environment.

Dynamic simulations

The dynamic simulations were conducted using the
Ecosim approach. This routine uses the linear equations
(defined on Ecopath) as differential equations that
define the variation of the biomass of the functional
groups with time (Walters et al. 1997, Christensen &
Walters 2004). From Equation 1, the temporal dynamic
program Ecosim defines a series of differential equa-
tions of the type:

2% = (PIQ)I*T Q ji- X Qij + li - (Mi + Fi + ei)*Bi (Eq. 2)
where dBi / dt is the growth during the interval dt of i
in terms of BBi; (P/Q) i is the quotient between
production and consumption; Mi is natural mortality
not caused by predation; Fi is the fishing mortality; Ei
is immigration; Il is emigration; and Ei x Bi - li is the
net migration rate. The consumption calculations (Q)
are based on the theory of the "foraging arena,” The
prey is not available all the time, displaying different
behavior patterns that make the prey vulnerable or not
for predation. Thus, the biomass of i is divided between
a vulnerable fraction and a fraction not vulnerable to
predators, and the transfer (v) between the two fractions
(vulnerable and not vulnerable to predation) is what
determines the control of trophic flow between
predators and prey (Walters et al. 1997, Walters &
Martell 2004).

In this context, the consumption of i from its
predators j is defined as:

Qij = (Eq. 3)

where aij represents the effective search for prey i by
predators j, vij is the transfer of biomass between a
vulnerable and invulnerable state to predation, BBi and
BjB are the biomass of prey i and predators j, Ti and Tj
is the relative time used for feeding, Sij is the factor
defined by a short or long-term environmental function,
Mij represents a mediating factor, and Dj represents the
effects of limiting the consumption rate (Walters et al.
1997, Pauly et al. 2000, Christensen & Walters, 2004).

aij.vij.Bi.Bj.Ti.Tj.Sij.Mij/Dj
vij+vij.Ti.Mij+aij.Mij.BjSijTj/Dj
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Table 1. Catch and discard values assigned to the four fleets of the Rio de la Plata estuary. UA: Uruguayan artisanal, Ul:
Uruguayan industrial, AA: Argentinean artisanal, Al: Argentinean industrial, expressed as t km2 yr! corresponding to 2006
data. Total values by 70,500 km?,

Functional group/ UA ul AA Al Total Total
FI Di h
eet Discard Catch  Discard Catch  Discard  Catch Discard  Catch Iscard Cate
Pontoporia 0.00023 0.00023 0.00046
blainvillei

Galeorhinus galeus 0.00185 0.00002 0.00022 0.00002  0.00207
Urophysis

brasiliensis 0.00138 0.00009 0.00091 0.00009  0.00228
Sgrr:::‘:ﬁﬂ;; 0.00020 0.00025 0.00245 0.00061  0.00012 0.00051 0.00037 0.00378
Flounders 0.00005 0.00011 0.00106 0.00011  0.00111
Squatina guggenheim 0.00064 0.00036 0.00361 0.00036  0.00425
Prionotus nudigulas 0.00000  0.00000
Mustelus schmitti 0.00276 0.00147 0.01475 0.00147 0.01751
Other marine fishes 0.00003 0.00371  0.00074 0.00307 0.00074  0.00682
Micropogonias

firmieri adult 0.06722 0.06059 0.60590 0.22349  0.04445 0.18522 0.10504  1.08182
Micropogonias 0.00120 0.00120  0.00240
furnieri youth

Rapana venosa

Cynoscion guatucupa

Jouth 0.00110 0.00110  0.00220
%/Slct)scmn guatucupa 0.00303 0.01703 0.17034 0.01947 0.00387 0.01614 0.02091 0.20898
Hard bottom fishes 0.00005 0.00004 0.00044 0.00004  0.00049
Large gastropods 0.00018 0.00177 0.00018 0.00177
Sciaenidae 0.00688 0.00676 0.06763 0.00032 0.00461  0.00092 0.00383  0.00800  0.08295
Rays 0.00010 0.00005 0.00052 0.00027 0.00042  0.00008 0.00035  0.00041  0.00139
Pelagic fishes 0.00244 0.00173 0.01728 0.00142 0.00397  0.00080 0.00333  0.00395  0.02701
Shrimps 0.00047 0.00047
Mytilidae 0.00150 0.00150
Large bivalves 0.01150 0.00115 0.01150
Sum 0.000230 0.092111 0.089837 0.898373 0.004542 0.256285 0.050986 0.212443 0.145596 1.460713

Thus, the interaction between predators and prey is
modeled by imposing an exposure limit of the biomass
of the prey to the predator, depending on whether the
control of trophic flow is dominated by the prey
(bottom-up control) or by the predator (top-down
control) (Walters et al. 1997, Christensen & Walters
2004). If the vulnerability parameter is high, the
interaction between predator and prey depends largely
on the abundance of the predator (top-down) since the
passage rate from an invulnerable to a vulnerable state
is high. On the contrary, if it presents very little
vulnerability, the prey mainly controls the interaction
(bottom-up).

Simulation scenarios

Four scenarios were simulated for 25 years to evaluate
the consequences of changes in discard rates and the

increase in fishing effort by the fleets in the area (Table
2). In the first scenario, the combined effects of
increased fishing effort and a lineal decrease to 0 of
discards were explored. The consequences of the
predominance of ecosystem control top-down, bottom-
up, and mixed control in the vulnerability matrices were
explicitly considered in this case. Thus, the model's
sensitivity to this parameter was explored, allowing us
to evaluate the interactions and variations of the
biomass of different groups under different predator-
prey controls.

A linear decrease in discards was simulated in the
second scenario, reaching 0 after 25 years of simu-
lations but maintaining the same fishing effort.

In the third scenario, an increase in the fishing effort
was simulated as two times its initial value for the
industrial fleets and 1.5 times for the Argentine and
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Table 2. Description of the 25-year Ecosim simulation scenarios performed changing discard effort and ecosystem control
in the Rio de la Plata estuary model. UA: Uruguayan artisanal, NA: not analyzed.

Stage Discards Effort others Ecosystem
UA fleets control
1 Effort increase Decrease to 0 Increase x 1.5 Increase x 2 bottom-up mixed
Discard decrease top-down
2 Discard decrease Decrease to 0 = NA
3 Effort increase = Increase x 1.5 Increase x 2 NA
4  Discard pulse 1 x 3x increase = NA

Uruguayan artisanal fleets. Discard rates were main-
tained unchanged.

In the last scenario, a discard pulse was simulated in
year 12, multiplying for three times its initial value, i.e.
from 0.145 to 0.437 t km™. The magnitude of the pulse
was evaluated to generate relevant changes in the
functional groups. To transfer the scenarios to be
simulated to Ecosim, 25-year time series corresponding
to the simulated period were created in a .csv file
replicating the fishing effort and discard patterns
mentioned above. This file was imported into Ecosim,
defining the series as forcing functions. In the case of
fleet changes in the fishing effort, effort data by gear
type (data control # 3: forcing) was applied. For the
simulation of changes in discards, force biomass (data
control # -1: forcing) was applied.

The results of the temporal simulations are
presented in two waysfirst, the temporal trajectory of
the initial biomasses (Ecopath input values) along the
simulated period. Second, analysis of the final biomass/
initial biomass ratio expressed as a percentage of
change at the end of the simulation period.

RESULTS

Mass balance model analysis

It was observed that the groups that consumed the most
discards were Otaria flavescens, seabirds and bento-
phagous fish, Urophycis brasiliensis, Flat fishes, and,
to a lesser extent, Mustelus schmitti (Table 3).
Furthermore, these results agree with the selection
index (electivity) for O. flavescens, seabirds, U.
brasiliensis, and flat fishes, close to 1 in these cases.
Discards have a TL = 1, as detritus and phytoplankton.
Discards interact mainly with top predators, including
marine mammals (O. flavescens), narrownose smooth-
hound (Mustelus schmitti), and Squatina guggenheim,
seabirds, and fishes (U. brasiliensis) (Supplementary
File, Table 2A).

Ecotrophic efficiency values were close to 1 (0.95)
for discards, indicating that the discard would be consu-

Table 3. Consumption and electivity values for major
consuming discard in the ecosystem of the Rio de la Plata
estuary.

Consumption

(tkm2yr?)  Electivity
Otaria flavescens 0.0163 0.9434
Seabirds 0.0692 0.9688
Urophycis brasiliensis 0.0148 0.9385
Flounders 0.0257 0.7222
Mustelus schmitti 0.0124 0.3184

med almost entirely in the system; the amount that
flows to the detritus or is exported outside the
ecosystem is scarce (0.007 t km?). Regarding the
ecosystem statistics derived from the network analysis,
specifically referring to discard, the contribution to the
ascendency was 1.86 flowbits and development
capacity 2.97 flowbits. Their contribution to the total
trophic flows (TST) represents 0.0003% and to the
growth and development of the trophic web 0.003%
(ascendency).

Discards represent 10% of the total catches
estimated at 1.46 t km? yr! of which 61.56%
correspond to the Ul, and 6.3% to the UA, the AA
represents 17.56% and the Al 14.58%. Mixed trophic
analysis showed that a positive impact of the discard is
observed mainly on seabirds, O. flavescens, the flat
fishes, U. brasiliensis, and, to a lesser extent, S.
guggenheim. The negative impacts were produced on
functional groups of the genus Genidens and
Porichthys (fraile, white sea catfish, and lucerna),
Galeorhinus galeus, and to a lesser extent on various
groups of commercially important fish (Micropogonias
furnieri and Cynoscion guatucupa) (Fig. 2).

Dynamic model analysis
Increase in fishing effort and decrease in discards

In the first scenario tested, the increase in fishing effort
and the decrease in discards were jointly evaluated
under three vulnerability values (ecosystem control). At
a general level, it was shown that the type of ecosystem
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Figure 2. Mixed trophic impacts in the Rio de la Plata estuary and its adjacent shelf. The bars quantify the direct and indirect
trophic impact of fisheries discards. FCAMDEL.: Mar del Plata coastal fleet, FCANBA: artisanal fleet of the north of Buenos

Alires.

control largely influences the behavior of functional
groups. Changes in biomass are more pronounced
under the assumption of ecosystem control bottom-up
than under mixed and top-down (Fig. 3). A decrease in
the biomass of all the groups evaluated was observed in
the case of top-down control. Such decrease is more
evident in the functional higher trophic level groups
(Pontoporia blainvillei and Tursiops truncatus) and
some fishery target species such as M. furnieri and U.
brasiliensis. Under the mixed ecosystem control, the
general tendency is to decrease the biomass of most
functional groups. However, this decreasing tendency

is less pronounced than in top-down control. As an
exception to these behaviors, the U. brasiliensis group
would remain almost stable and recover its initial value
at the end of the simulation. In the simulation under
control bottom-up, it would produce, as in the other
situations, a decrease in biomass at higher trophic levels
(seabirds, P. blainvillei, and T. truncatus).

On the other hand, the decrease in the biomass of M.
furnieri is notable. Under this control type, it is
simulated that there would be no variations in the
biomass of the group "other marine fish" (e.g. Conger
orbignyanus, Merluccius hubbsi, and Percophis
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to the initial year under the three ecosystem controls. a) bottom-up, b) mixed, and c) top-down. The figure only shows the
functional groups that present a remarkable variation in their biomass.

brasiliensis), which is observed under the previous
controls. There are also variations in the biomass of
species at intermediate levels that are not present in the
previous scenarios. For example, Rapana venosa would
present an oscillating increase in its biomass with
maximum amplitude in year 22 and M. schmitti, a
minimum tendency to increase its biomass.

Zero discard

In the second scenario, the gradual decrease to zero of
the discards would produce a linear increase in the
biomass of two functional groups, squids and M.
schmitti. However, several groups showed a decreasing
trend under this scenario (e.g. P. blainvillei, in juveniles
of M. furnieri, in seabirds, members of the group "other
marine fish", T. truncatus) (Fig. 4).
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Increased fishing effort

The third scenario produces the increase of some
groups and the decrease of other ecosystem
components such as seabirds and M. schmitti,
invertebrates, squids, R. venosa, and to a lesser extent,
U. brasiliensis would show an increasing trend in their
biomass. However, a downward trend in biomass
would occur in P. blainvillei, adults of M. furnieri (Fig.
5).

Discard pulse

In the final scenario, as a discard pulse occurs, an
increasing trend can be observed in the main top
predators of the model, where O. flavescens would
increase its biomass in one year, after which it would
decrease steadily until reaching its initial value near the
end of the simulation, spreading its effect for more than
10 years. On the other hand, P. blainvillei would
present a minimal increase, tending to keep that increa-



406 Latin American Journal of Aquatic Research

1,07

1,06 -

1,05

1,04 -

1,03 -

1,02 -

Relative biomass

1,01

0,99

Years

Ll Discard pulse

+ 4,599 = Galeorhinus galeus

w=Urophycis brasiliensis

4,099

~Pontoporia blainvillei

weOtaria flavecens

~ 3,599

w——Squids

. 3099 Genidens+ Porichthys
s

Sea birds

+~ 2,599 Mytilidae

- 2,099

Relative biomass

1,599

- 1,099

1 2 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25

0,599

0,099

Figure 6. Results of the Ecosim scenario: discard pulse. The values of the changes in relative biomass during the simulation
are represented on the left y-axis, and the changes in the relative biomass of discard pulse (shadowed area) are represented
on the right y-axis (shadow area). The figure only shows the functional groups that present a remarkable variation in their

biomass.

se constant during the remaining 11 years of the
simulation. G. galeus would present an increase,
recovering its initial biomass eight years after the pulse.
The squid group will show an increase in the two first
years, after which it would decline below its initial
value. Regarding the Mytilidae and U. brasiliensis
groups, they also show a slight decrease in their
biomasses after the pulse, for three and four years,
respectively, after which they recover their initial value,
remaining stable during the rest of the simulation (Fig.
6).

DISCUSSION

In this work, the role of discard on the Rio de la Plata
(RdIP) estuary ecosystem and its adjacent shelf was
evaluated for the first time. The dynamic simulations
showed that some groups respond positively and others
negatively to the presence of discard. A decrease in
discards would produce a slight decrease in most
functional groups' biomass, being more pronounced in
the predators of the system. Variations in biomass of
the ecosystem are more sensitive under the assumption
of bottom-up control than under the assumption of
mixed control and, to a lesser extent, under top-down
control.

Mass balance model

Regarding the role on the ecosystem, although the
discard rate is similar to the reported in other marine

regions (e.g. Baltic Sea: Zeller et al. 2011; North Sea:
Catchpole et al. 2005, Johnsen & Eliasen 2011; and the
Mediterranean: Tsagarakis et al. 2013, Piroddi et al.
2015), for the RdIP estuary the influence of discard on
the flows and organization of the trophic network (e.g.
ascendency) does not seem to be relevant.

The upper and intermediate trophic levels mainly
consume the proportion of discard that reaches lower
compartments of the system or is exported from the
system is scarce. This consumption in upper and
intermediate compartments is related to the species'
trophic preferences and intrinsic properties of the
discard (e.g. does not move to escape consumption) and
its flow through the water column. However, fishing
discards in our study area seem to be a factor of direct
importance for some of the predatory groups (Votier et
al. 2004, Galli 2007, Soriano et al. 2016) and some
fishing target species (Rey 2000, Dato et al. 2006).
Mixed trophic impacts analysis highlight that the
effects produced by fishing discards are more
pronounced on some components of the system (Otaria
flavescens, flounder), and there is almost no impact of
discards on the fishing fleets (Fig. 2). These
observations reaffirm other results that demonstrate the
incidence of discards as an easily accessible food
source for various marine species (Oro et al. 2013,
Fondo et al. 2015, Karris et al. 2018).
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Dynamic model
Increase in fishing effort and decrease in discards

In a scenario of increased fishing effort and decreased
discards, most groups would generally decrease their
biomass; however, the magnitude of change in biomass
depends on the type of ecosystem control assumed
(Pauly & Palomares 2002). The changes in biomass are
more pronounced under bottom-up control than under
the assumption of mixed control and, to a lesser extent,
under top-down control (Coll et al. 2009).

Tursiops truncatus presents the greatest decrease in
its biomass; this species would decrease its biomass
mainly due to increased fishing effort. However,
combined interactions between discard and effort
would also explain the trend (Chilvers & Corkeron
2001, Fruet et al. 2012). Separately these discards and
efforts generate similar values in the decline of this
species (Figs. 5-6). Considering the other cetacean,
Pontoporia blainvillei presents a sustained tendency to
decrease biomass regardless of the control type.
Similarly, previous research (De Maria et al. 2012)
agrees that artisanal fishing is the greatest pressure on
these populations (Praderi 2000, Silveira et al. 2018).
Also, two important commercial fish species
(Urophysis brasiliensis and Micropogonias furnieri)
show a decreasing trend throughout the simulation
period, likely related to increased fishing effort (Arena
& Rey 2000). However, the possible effects of a
decrease in discards (Denadai et al. 2015) on which
both species partially feed should also be considered.
Rapan venosa shows a considerable increase in
biomass (particularly in a bottom-up setting). An
exception in this scenario, This behavior may directly
or indirectly influence the decrease of M. furnieri since
they present a significant degree of niche overlap that
could lead to competition (Lercari & Bergamino 2011,
Brugnoli et al. 2014).

Reducing discards has ecological effects on the food
web by reducing the food supply at several trophic
levels. Simulating the elimination of discards agrees
with Fondo et al. (2015) research. In our study area,
primary producers (phytoplankton) and benthic inver-
tebrates with low trophic levels have key groups for the
ecosystem (Lercari et al. 2014). Therefore, these
trophic interactions show that bottom-up mechanisms
play an important role in the estuary of the RdIP and its
platform (Vogler et al. 2015).

Zero discard

Under a zero discard scenario, some large predators in
the system (O. flavecens, P. blainvillei, and seabirds)
would decrease their biomass because they would use
fish discards as freely available food (Oro et al. 2013).

Consistent with other studies, it is not observed that
these generalist species can show a rapid recovery of
their biomass (Fondo et al. 2015) once the discards
have been removed. This recovery is observed in
Galeorhinus galeus, probably directly due to its trophic
preferences (Rey 2005), since some of its prey
increases in biomass (e.g. squids). Commercial fish
species, M. furnieri, would show a major decrease in
biomass under a zero discard situation. The lack of
increase in the biomass of the groups belonging to
lower trophic levels may be related to the fact that there
is greater pressure from their predators and, in turn, that
lower-level groups do not use discard as food (Heath et
al. 2014). The exception is the squid group, which
presents a considerable increase in its biomass
compared to the rest of the groups. Although these
statements need another type of research and analysis,
this result may be due to their pelagic behavioral and
foraging habits (Brunetti & Ivanovic 1992). However,
these statements need another type of research and
analysis (Heath et al. 2014).

Increased fishing effort

Under an increasing fishing effort scenario, the model
predicts contrasting results in functional groups of
different trophic levels. There is a tendency to increase
the relative biomass of seabirds, R. venosa, squids,
Mustelus schmitti, and to a lesser extent, U.
brasiliensis. The behavior of commercial species U.
brasiliensis and M. schmitti (i.e. no decrease in its
biomass under increasing effort) may be related to the
fact that fishing effort does not necessarily lead to a
higher percentage of objective catch (Vasconcellos
2007, Coll et al. 2008).

For example, using age-structured biomass models,
an increase in mortality can lead to an increase in
juvenile biomass through the regulation of repro-
duction. At the same time, it can increase adult biomass
through regulation of maturation (De Roos et al. 2007),
which may have direct community consequences
because it benefits predator populations that prey on the
different life stages. The former could indicate over-
compensation mechanisms in these species (Ohlberger
et al. 2011).

On the other hand, the highly exploited M. furnieri
presents a considerable decrease in its biomass, a direct
consequence of the increase in fishing pressure since it
is the main fishing target of the different fleets.
However, the trend may also be influenced by the
increase in the biomass of R. venosa because this
species can generate some overlap effect of the trophic
niche (Lercari & Bergamino 2011, Brugnoli et al.
2014). On the other hand, the large predators of the
system (T. truncatus, P. blainvillei, and G. galeus) are
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negatively affected by the increase in fishing effort, as
evidenced by previous research (Rosas et al. 2002,
Seabra 2018). However, O. flavescens and seabirds do
not decrease their biomass, possibly because they are
species that are not targeted for fishing (Bergamino et
al. 2012, Votier et al. 2013). Nevertheless, there are
negative interactions between these species and fishing
activities that are widely documented (Bicknell et al.
2013, Bombau & Szteren 2017).

Discard pulse

When simulating a pulse in the fisheries discards, the
main top predators of the model are immediately
positively influenced. These results are consistent with
previous research (Hall et al. 2000, Bicknell et al.
2013), which could reflect the incidence of anthro-
pogenic-induced changes in the diets due to the easily
accessible food observed on O. flavescens and seabirds
(Bicknell et al. 2013, Calado et al. 2018, Machado et al.
2018, Szteren et al. 2018). Likewise, some bottom-
related groups (such as the Genidens + Porichthys) tend
to increase their biomass, possibly because not all the
discard is consumed in the water column and reaches
these species at the bottom, forming part of their diet
(Stagioni et al. 2012). However, the group's increase in
flounder and U. brasiliensis is low, presumably due to
the trophic pressure exerted by their predators (O.
flavescens, G. galeus) (Romero et al. 2011), which did
show an increase in their biomass.

CONCLUSIONS

The role of discard on the global attributes of the
estuary of the RdIP estuary ecosystem does not seem
noticeable, resulting in a low incidence in trophic
flows, growth, and development of the trophic web.
However, discard can be a factor of direct and indirect
importance for some of the top predators of the RdIP.
The greatest positive effects of fishing discards occur
on seabirds, O. flavescens, and U. brasiliensis. The
negative impacts were produced on functional groups
of the genus Genidens and Porichthys (mochuelo and
lucerna), G. galeus, and to a lesser extent on various
groups of commercially important fish. Dynamic
simulations indicate that the decrease in fishing
discards would have, consequently, a slight decrease in
the biomass of most functional groups, being more
pronounced in the predators of the system. In the
simulations, the variations in biomass are more
sensitive under the assumption of ecosystem control
bottom-up than under the assumption of control mixed
and, to a lesser extent, control top-down.

Perspectives

Our analysis hopes to contribute to understanding the
role of the discards on the ecosystem. Still, our model
predictions should not be considered infallible forecasts
because of internal (model) constraints and weakness in
the data quality used for the simulations. These
simulations should be taken as generators of hypotheses
to analyze further the functioning and the role of human
actions. Discard is considered one of the main problems
of the marine ecosystem and fishery sustainability
worldwide (Bovcon etal. 2013, FAO 2020). Even when
the discard values are considered inside the reported
global range, the RdIP is not excluded from this
concern (Ehrhardt & Rey 1996, Rey et al. 2000). In this
context, implementing zero discard policies and
increasing fishing pressures will not represent a
relevant benefit for most commercially important
groups. To further address these problems, it should be
necessary to work more deeply at the academic and
management level and promote continuous monitoring
of the discard practices. In addition, the type of
ecosystem control should be considered when perfor-
ming the simulations for a complete description of the
system's functioning and its impacts.
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Table 1A. Primary input and estimates made by Ecopath for each functional group in the Rio de la Plata ecosystem.

Production / Biomass rate (B/P). Consumption / Biomass rate (Q/B). Production / Consumption rate (P/Q). Ecotrophic effiency (EE).

. . Biomass P/B Q/B P/Q EE
Funcional group Trophic level
(tkm2yrt) (yrh) (yr) (yr)

Tursiops truncatus 3.9 0.011 0.019 14.585 0.0013 0.00
Pontoporia blainvillei 3.9 0.0142 0.037 27.295 0.0013 0.88
Otaria flavescens 3.7 0.0186 0.058 17.182 0.0034 0.00
Seabirds 35 0.0097 0.285 71.678 0.0040 0.00
Galeorhinus galeus 3.7 0.0142 0.532 3.208 0.1657 0.88
Urophycis brasiliensis 3.6 0.1381 0.291 4.119 0.0706 0.97
Squids 34 0.0653 5.773 15 0.3849 0.87
Genidens + Porichthys 3.2 0.4308 0.519 4.409 0.1177 0.82
Flat fishes 29 0.7651 0.897 2.967 0.3024 0.95
Squatina guggenheim 2.9 1.7128 0.38 3.009 0.1261 0.25
Prionotus 3 0.512 0.272 6.485 0.0420 0.80
Mustelus schmitti 3 0.6772 1.67 4.570 0.3654 0.10
Other marine fishes 3 0.2193 0.374 5.912 0.0633 0.99
Micropogonias furnieri adult 3 6.0159 0.578 3.013 0.1918 0.38
Micropogonias furnieri youth 29 4.9077 1.218 6.314 0.1930 0.78
Rapana venosa 3 15.189 0.256 2.824 0.0906 0.19
Cynoscion guatucupa youth 2.9 9.7492 1.167 7.150 0.1632 0.46
Cynoscion guatucupa adult 2.8 7.0798 0.911 3.465 0.2628 0.06
Hard bottom fishes 2.8 0.2079 1.031 8.091 0.1275 0.98
Large Gastropoda 2.7 2.81 0.318 7.587 0.0419 0.78
Sciaenidae 2.7 3.612 0.851 4.012 0.2122 0.93
Rays 25 7.1773 0.176 2.857 0.0617 0.21
Zooplankton C-O 25 1.1586 22.28 62.305 0.3576 0.61
Pelagic fishes 24 4.3807 0.583 6.425 0.0908 0.95
Other freshwater fishes 23 0.004 0.9917 7.3039 0.1358 0.87
Rock bottom benthic invertebrates 2.2 0.2304 441 14.182 0.3109 0.96
Polychaeta 2 16.422 1.534 17.189 0.0893 0.89
Shrimps 2 46.582 2.736 14.488 0.1889 0.80
Mytilidae 2 27.868 0.543 6.785 0.08 0.34
Other benthic invertebrates 2 1.6838 5.549 16.141 0.3438 0.99
Bivalvia estuarina 2 23.961 2.084 7.873 0.2648 0.93
Corbicula fluminea 2 11.928 0.674 7.418 0.0909 0.80
Heleobia 2 1.718 1.831 8.981 0.2039 0.82
Large bivalves 2 11.476 1.958 7.524 0.2603 0.85
Zooplankton H-O 2 5 114.96 325.089 0.3536 0.12
Phytoplankton 1 42 500 0.08
Detritus 1 191.48 0.05
Discard 1 0.1461 0.94
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