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ABSTRACT. Amphora aff. amoena and Chaetoceros muelleri are potential diatoms with good proximal 

composition and the ability to grow rapidly. Like other microalgae, this composition can be improved by 

adjusting their culture conditions, such as exposure to different light conditions. However, there is still a need 

to explore these culture conditions further and their effect on these diatoms. This study aimed to evaluate the 

chemical-proximal composition of the diatoms A. aff. amoena and C. muelleri under three wavelengths: white 

(WL) range (400-750 nm), blue (BL) range (430-480 nm), and red (RL) range (595-660 nm), at an irradiance of 

200 µmol m-2 s-1 using LED lights. In both species, A. aff. amoena and C. muelleri, the highest cell concentration 

under WL was: 216,250 and 1,198,125 cells mL-1, respectively. The carbohydrate content was 5.80% for A. aff. 

amoena and 2.21% for C. muelleri, while protein content was 13.41% for A. aff amoena and 12.31% for C. 

muelleri. Lipids were found to be most abundant in A. aff. amoena when exposed to RL (37.19%) and C. muelleri 

(60.48%) when exposed to BL. No significant differences were found in A. aff. amoena under different light 

conditions. 

Keywords: Chaetoceros muelleri; Amphora aff. amoena; wavelengths; chemical-proximal composition; 

growth, diatoms 

 

 

Microalgae are photosynthetic organisms that inhabit 

various aquatic habitats, from oceans to freshwater 

environments (Blackburn & Volkman 2012). They also 

participate in biogeochemical cycles of important 

macroelements and carbon dioxide fixation (Farrelly et 

al. 2013). In addition to the high efficiency of conver-

ting solar energy into chemical energy, they have fast 

growth and do not compete for water and land in 

agricultural areas, being an advantageous characteristic 

of their culture (El Gamal 2010). Recently, studies have 

been oriented toward pharmaceuticals, nutrition, and 

biodiesel due to their rich biochemical composition, 

which molecules could have potential bioactivity (Miao 

& Wu 2006, Hosikian et al. 2010, Simas-Rodrigues et 

al. 2015). Microalgae naturally produce different 

bioactive compounds, which allow them to resist various 
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environmental conditions (Hosikian et al. 2010). One 

of the most diverse and ubiquitous groups are diatoms 

(around 200,000 species of diatoms globally) (Mann & 

Vanormelingen 2013), which have been used for 

decades in traditional industry, although they have been 

more widely used in the aquaculture sector; they have 

been becoming candidates for other industrial applica-

tions as high added value products (De Tommasi 2016, 

Hamed 2016). 

Diatoms are abundant in various extracellular 

polymeric substances, including lipids, proteins, carbo-

hydrates, carotenoids, sterols, and isoprenoids. These 

compounds are valuable for their uses in dietary 

supplements, aquaculture, cosmetics, biomedical and 

pharmaceutical applications (such as antiproliferative, 

antioxidant, antibacterial, antiviral), and bioremediation, 
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among other uses (Lee et al. 1989, Arad & Yaron 1992, 

Brown 2002, Mendes et al. 2003, Spolaore et al. 2006, 

Zammit 2016, Chew et al. 2017). Two potential 

candidates for utilization due to their rich metabolites 

are the benthic diatom Amphora aff. amoena and the 

planktonic diatom Chaetoceros muelleri. 

It has been observed that manipulating their 

cultivation conditions favors a biomass rich in bioactive 

compounds. Factors such as limitation of nutrients, 

changes in pH, temperature, salinity, and light modifi-

cations are most important in its development (Markou 

et al. 2012). Intensity and wavelength are key in the 

development of microalgae. Various studies have 

shown that, by modifying the lighting conditions, it is 

possible to obtain a better production of biomass and 

bioactive compounds in various species of microalgae 

(Schulze et al. 2014, He et al. 2015, Helena et al. 2016, 

Jaubert et al. 2017), including diatoms (Nilawati et al. 

1997) 

Light is a factor that influences the development of 

microalgae. Several studies have shown that exposure 

to various light conditions can stimulate the production 

of biomolecules, directly influencing the proximal 

composition (Markou et al. 2012, Fimbres-Olivarría et 

al. 2018). 

Water has a high absorption of red light (RL, 720-

740 nm). Therefore, it is the first to be absorbed. In deep 

waters, blue light (BL, 430-480 nm) and green light 

(500-570 nm) are predominant (Levine & MacNichol 

1982). The type of preferential length of each species 

depends on the physiological adaptations of the 

microalgae. For example, benthic algae, naturally 

distributed in the seabed or aquatic substrate, tend to 

perform higher when exposed to BL. On the other hand, 

planktonic algae tend to prefer the RL, as they are 

distributed on the surface and in the water column (Guo 

& Fang 2020). 

RL, particularly the far-red, promotes high growth 

rates; however, cell size is smaller in many microalgae 

(De Tommasi 2016). In RL, the spectrum of 

chlorophyll absorption is wider, and there is more 

carbon accumulation, favoring the production of lipids 

and carbohydrates; likewise, it reinforces photosystem 

II (De Tommasi 2016). 

On the other hand, BL has been reported to promote 

the activation of enzyme cascades (ferredoxin), 

increase levels of alanine, aspartate, glutamate, 

glutamine, and malate, promote protein synthesis, and 

strengthen photosystem I (Schulze et al. 2014, De 

Tommasi 2016). 

Due to microalgae's great importance and useful-

ness in various industrial fields, it is essential to 

generate information about its proximal composition 

under exposure to various wavelengths. This will allow 

us to delve further into the potential use of these 

biomolecules in multiple areas, such as nutrition, 

aquaculture, cosmetics, and bioremediation. 

The benthic diatoms A. aff. amoena and C. muelleri 

were obtained from the strain collection of the 

Department of Scientific and Technological Research 

of the University of Sonora (DICTUS, by its Spanish 

acronym). They were cultivated in 1 L Erlenmeyer 

flasks with 700 mL of medium F, salinity of 35, and 

average temperature of 24.5 ± 1.3°C. The medium was 

prepared with previously filtered and sterilized 

seawater. The microalgae were exposed to three 

wavelengths: BL (430-480 nm), white light (WL, 400-

750 nm), and RL (595-660 nm), at an irradiance of 200 

µmol m-2 s-1 during 24 h using light-emitting diodes 

(LED). Phillips®, Amsterdam. The cultures were 

carried out in three biological replicates (each of three 

technical replicates). Irradiance was measured with an 

immersion photometer brand LI-COR Model LI-250 

Light Meter (Arredondo-Vega & Voltolina 2007). 

For the cell count, 3 mL of each treatment were 

taken and fixed with Lugol (solution of I2 at 1% and KI 

at 2% in distilled water) (Andersen 2005). Cell counts 

were performed daily and were carried out in a 

Neubauer chamber (0.1 mm depth) and observed in an 

optical microscope (Carl Zeiss Axiostar Plus). Consi-

dering an initial concentration of 50,000 cells mL-1 for A. 

aff amoena and 100,000 cells mL-1 for C. muelleri. The 

number of cells was obtained using the following 

equation (Arredondo-Vega & Voltolina 2007). 

Number (cells mL-1) = (
# total cells

# plots counted
) (10)4 

Biomass was determined gravimetrically by weight 

difference between the GFC glass fiber filter (GFC 45 

mm diameter) with and without a microalgae sample, 

with a known concentration for a duplicate of each 

culture. The filters were previously washed with 

distilled water and dried for 8 h in a conventional oven 

(THELCO® Laboratory Oven, Precision Science, 

Model 130). The biomass and filters were washed with 

3% ammonium formate to remove salt. The filters were 

placed in aluminum foil in the oven for about 12 h. The 

total dry weight (mg-1 L) was obtained by calculating 

the weight difference between the weight of the dry 

filter without the sample and the weight of the filtered 

sample, divided by the volume of the filtered culture. 
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The filter with the dry and weighed biomass was 

incinerated in a muffle (Felisa®, Model 3 60D) at 490°C 

for 7 h. The filters were weighed; by the weight 

difference between the filter with dry biomass and the 

filter with ash, the inorganic weight (ashes) was 

obtained. Organic matter was obtained by weight 

difference with dry sample and ash filter (Sorokin 1973, 

Arredondo-Vega & Voltolina 2007). 

For the chemical analysis, a known volume of each 

flask was filtered through the Whatman GFC of 25-45 

mm diameter filters. Proteins were determined follo-

wing the methodology described by Lowry et al. (1951) 

and modified by López-Elías et al. (1995); and the 

methodology of DuBois et al. (1956) for the 

determination of carbohydrates and Pande et al. (1963) 

to estimate lipid content. 

Growth kinetics, cell concentration, dry biomass, 

ash, organic matter, and chemical analysis (carbohy-

drates and proteins) were analyzed by one-way 

ANOVA with a significance level of P ≤ 0.05. The 

Tukey test separated the means for those parameters in 

which statistically significant differences were 

observed. Statistical analyses were performed with the 

JMP 11 statistical software. 

In this study, different wavelengths of light 

impacted cell growth and physiochemical determi-

nations on the diatoms A. aff. amoena and C. muelleri. 

Light is one of the most important factors for 

microalgae, and it is essential to initiate photosynthesis 

(Schulze et al. 2014). The quality of light includes the 

different wavelengths that directly affect their 

development (Lepetit et al. 2017). The visible spectrum 

represents a small portion of the electromagnetic 

radiation spectrum, spanning from UV (380 nm) to RL 

(780 nm) (Sliney 2016). 

Sunlight is the primary source of the microalgae in 

their natural habitat or cultivated outdoors. However, in 

laboratory settings, using LEDs emitting specific wave-

lengths has proven to be a very efficient alternative (Li 

et al. 2020). 

BL and RL subserve the development of microalgae 

(Lepetit et al. 2013, Schulze et al. 2014, Fimbres-

Olivarría et al. 2018, Iwasaki et al. 2021), WL has the 

entire visible spectrum, it contains BL and RL in a 

balanced way, that can favor a greater accumulation of 

carbon. Therefore, this light provides the illumination 

condition to which microalgae are exposed in their 

environment (Lehmuskero et al. 2018). The WL 

influenced growth kinetics on the microalgae A. aff. 

amoena, reaching an average of 216,250 ± 4,389 cells 

mL-1, followed by BL (187,083 ± 1,512 cells mL-1), 

meanwhile the lower cell concentration was observed 

when exposed to the RL (130,312 ± 5,340 cells mL-1) 

(Fig. 1). The same tendency occurred on C. muelleri, 

the lower concentration was obtained when exposed to 

the RL, 242,500 ± 13,248 cells mL-1, on BL 599,375 ± 

18,561 cells mL-1, and the highest at the WL exposition 

(1,198,125 ± 29,4506 cells mL-1) (Fig. 2). Other authors 

reported a decrease in the number of cells in the genus 

Chaetoceros when exposed to RL (Li et al. 2020, 

Iwasaki et al. 2021). In Chlorella vulgaris and 

Dunaliella tertiolecta, the RL causes low cell 

production (Tang et al. 2011, Yan et al. 2013). 

The different wavelengths did not affect the 

biomass and ash of A. aff. amoena. Nevertheless, in the 

diatom C. muelleri, a greater accumulation of organic 

matter and ash was observed in the cells exposed to RL 

(84.50 ± 0.09 g L-1 of dry weight (DW) and 77.00 ± 

0.05 (%DW), respectively, and in equal proportion 

under BL and WL (Table 1). Concerning the ashes 

(%DW), BL and WL exhibited the highest concen-

trations (33.00 ± 0.05 and 32.38 ± 0.04). 

The accumulation of carbohydrates in the diatoms 

A. aff. amoena and C. muelleri were favored with the 

WL (5.80 ± 0.02 and 2.21 ± 0.07%, respectively), 

followed by BL (0.44 ± 0.02 and 1.58 ± 0.16%, 

respectively). Further, a low concentration was recorded 

in the microalgae C. muelleri, though no carbohydrates 

were detected in A. aff. amoena exposed to RL. 

Previous studies have reported a higher content of 

carbohydrates for other benthic species, such as 

Navicula sp. (Fimbres-Olivarría et al. 2015). In the 

present study, A. aff. amoena was exposed to high 

irradiance (200 µmoL m-2 s-1), considering its benthic 

nature, this could cause photoinhibition, which leads to 

cell damage, therefore affecting the synthesis of 

primary metabolites (Lehmuskero et al. 2018). 

Regarding proteins, both species reached the major 

content under WL (13.41 ± 0.001 and 12.31 ± 0.01%, 

for A. aff. amoena and C. muelleri, respectively). 

However, RL generated the lowest amount in the 

diatoms A. aff. amoena and C. muelleri (3.29 ± 0.001 

and 3.30 ± 0.01%, respectively) (Table 1). In other 

studies, a consortium of Chlorella variabilis and 

Scenedesmus obliquus showed a higher amount of 

protein, 56% (Gatamaneni-Loganathan et al. 2020). 

Previously, it has been reported that BL plays a large 

role in protein production due to its participation in 

photosynthesis, which promotes a large accumulation 

of nitrogen and favors protein production. In this study, 

WL increases the accumulation of this biomolecule 

(Miao et al. 2016, Lehmuskero et al. 2018, Guo & Fang 

2020) since it contains the entire visible spectrum. It 

has been observed that RL can affect photosynthesis, 
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Figure 1. Growth kinetics of Amphora aff. amoena cultivated at different wavelengths. 

 

 

Figure 2. Growth kinetics of Chaetoceros muelleri cultivated at different wavelengths.  

 

 

causing an inhibition of protein production, as Pei et al. 

(2022) reported in the microalgae Isochrysis 

zhanjiangensis.  

Lipids were the most abundant biomolecule in the 

two diatoms. In A. aff. amoena, the effect of light 

exposure was also demonstrated; the highest 

percentage was in the RL (37.19 ± 0.57%) and the 

lowest in the BL (17.27 ± 0.29%). In lipids, the major 

accumulation was recorded in the RL, which aligns 

with the findings by Fimbres-Olivarría et al. (2015) for 

the benthic diatom Navicula sp. (35.24 ± 4.54%) at an 

irradiance of 50 µmol m-2 s-1; this light has a longer 

wavelength and generates a greater accumulation of 

carbon, which can promote the lipids synthesis. Also, 

Navicula sp. had the highest lipid content with the 

exposition to this light (Fimbres-Olivarría et al. 2015). 

Yang & Weathers (2015) reported that brief exposure 

to RL increased lipid production in the microalgae 

Ettlia oleoabundans. The increase in lipid production 

with exposure to RL could be attributed to a reduction 

in photosynthetic activity caused by the isolation of 

exposure to a single wavelength and light intensity. 

Light stress conditions have been reported to favor the 

accumulation of lipids in the cell (Severes et al. 2017). 

On the other hand, C. muelleri exhibited a higher 

concentration of lipids under BL (60.48 ± 2.4%). BL 

promotes the synthesis of RuBisCo and carbonic 

anhydrase, which favors lipid accumulation (Lehmuskero 

et al. 2018). Some studies have indicated that BL 

increases lipids in microalgae (Atta et al. 2013, Schulze 

et al. 2014). 
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Table 1. Biomass and proximal chemical composition of the microalgae Amphora aff. amoena and Chaetoceros muelleri 

cultivated at different wavelengths. One-way ANOVA and Tukey a posteriori P > 0.05. F: statistical value used to compare 

variances and determine significant differences between groups. Treatment values are means ± standard deviation of three 

biological replicates and three technical replicates. Different letters in the same row indicate significant differences. DW: 

dry weight.  
 

Amphora aff. amoena 

 Wavelength 
 430-480 nm 650-750 nm 400-750 nm P > F 

Biomass (g L-1 DW) 67.44b ± 12.65 37.94c ± 0.01 103.38a ± 10.27 0.0001 

Organic matter (%DW)  62.62 ± 0.02   67.50 ± 0.02    64.78 ± 0.02 0.1119 

Ashes (%DW)  37.38 ± 0.02  32.50 ± 0.07    35.22 ± 0.03 0.2036 

Total carbohydrates (%DW)   0.44b ± 0.02   0.00c ± 0.00     5.80a ± 0.02 0.0001 

Total lipids (%DW) 17.27c ± 0.29 37.19a ± 0.57   22.43b ± 0.23 0.0001 

Total proteins (%DW) 12.46b ± 0.01   3.29c ± 0.01   13.41a ± 0.01 0.0001 

Chaetoceros muelleri 

 Wavelength 
 430-480 nm 650-750 nm 400-750 nm P > F 

Biomass (g L-1 DW) 61.38b ± 0.08 84.50a ± 0.09 52.00b ± 0.01 0.0006 

Organic matter (%DW) 67.00b ± 0.05 77.00a ± 0.05 67.62b ± 0.40 0.0011 

Ashes (%DW) 33.00a ± 0.05 23.00b ± 0.04 32.38a ± 0.04 0.0004 

Total carbohydrates (%DW)   1.58b ± 0.16   1.46c ± 0.01   2.21a ± 0.07 0.0079 

Total lipids (%DW) 60.48a ± 2.4 17.03c ± 0.07 23.29b ± 1.01 0.0002 

Total proteins (%DW)   8.46b ± 0.011   3.30c ± 0.01 12.31a ± 0.01 0.0027 

 

 

It is evident that the WL, containing the entire 

visible spectrum, supported the accumulation and 

production of biomass and biomolecules. Lipids were 

the most abundant biomolecule, and both BL and RL 

favored this accumulation in both species. RL increased 

the lipid accumulation in the diatom A. aff. amoena, 

whereas in C. muelleri, BL was found to enhance this 

increase. Based on the knowledge gained about the 

effects of different wavelengths on these microalgae, 

further studies should be conducted to investigate the 

presence of different compounds that can promote the 

bioactivities of these species under light stress. 

Additionally, their applications can be explored to 

improve various aspects of food production, including 

their potential use in aquaculture and other related 

industries globally. 
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