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ABSTRACT. This study investigated the effect of probiotics on growth performance, survival, and gut 

microbiota of Penaeus vannamei challenged with Vibrio parahaemolyticus IPNGS16. Shrimp were exposed to 

Bacillus thuringiensis IPNGSM1 and Candida parapsilosis Lt6 (BY, bacilli, 3×106 CFU L-1; yeast, 3×106 CFU 

L-1; yeast, 3 g kg-1 feed) every fourth day for 30 days. On day 26, weight was determined, and samples for gut 

microbiota analysis were taken. Vibrio infection was performed on day 27. The software Shaman and 

MicrobiomeAnalyst were used to analyze the microbial sequences obtained from the Illumina platform. 

Additives did not affect growth, but survival significantly increased in shrimp treated with BY and challenged 

with V. parahaemolyticus. Predominant bacteria in shrimp gut belonged to Proteobacteria, Bacteroidetes, Vibrio, 

and Ruegeria. The bacterial community's diversity and composition did not change between treatment and 

control. In the treatment with BY, Vibrio showed decreased abundance, metabolism, and functional importance 

and showed negative interactions against Ruegeria, Pseudoalteromonas, Bacillus, and Roseobacter. Microbial 

additives increased survival in white shrimp but positively affected bacteria with probiotic potential and Vibrio 

negatively. 
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INTRODUCTION 

Shrimp farming is highly demanded worldwide, with a 

market value of US$4.85 billion (Geetha et al. 2020). 

However, losses in shrimp crops caused by pathogenic 

bacteria and viruses have increased, especially in the 

last two decades. Antibiotics are only used to prevent 

bacterial diseases, but their inappropriate use can 

generate resistance in bacteria, impacting the 

environment and the consumer (Ben et al. 2019, Zhou 

et al. 2019). 

 

______________ 

Associate Editor: Crisantema Hernández 

Among the bacterial pathogens that cause diseases 

in shrimp are Vibrio parahaemolyticus, V. alginolyticus, 

Aeromonas sp., Photobacterium sp., Shewanella sp. 

and Tenacibaculum sp. (Zhou et al. 2019, Kumar et al. 

2020). Strains of V. parahaemolyticus, which cause the 

acute hepatopancreatic necrosis disease (AHPND) 

known as early mortality syndrome (EMS), have 

become very important in aquaculture since it has been 

the caused mass mortalities up to 100% during the 30-

35 days after culture (de la Peña et al. 2015).  
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To improve the quality and sustainability of 

aquaculture production (Li et al. 2006), probiotics have 

been used to increase shrimp growth by breaking down 

nutrients that are more easily absorbed (Yan & Charles 

2018, Niu et al. 2021) and to induce non-specific 

immune response and improve disease resistance in 

shrimp (Safitri et al. 2015, Wang et al. 2019, Zheng et 

al. 2020). Furthermore, heterotrophic probiotic bacteria 

inoculated into the culture system's water may remove 

organic matter and toxic nitrogenous waste (Burford et 

al. 2003). 

In shrimp culture, probiotic bacteria such as lactic 

acid bacteria (Du et al. 2022, Lee et al. 2022), Bacillus 

spp. (Amoah et al. 2019, Adilah et al. 2022, Lee et al. 

2022, Tao et al. 2022), Arthrobacter bussei (Kim et al. 

2022), Clostridium butyricum (Wang et al. 2018), and 

Paenibacillus polymyxa (Amoah et al. 2020) are used 

as biological control agents and growth promoters. 

Yeasts are another type of probiotics used in 

aquaculture due to their source of nutritional elements 

such as proteins, lipids, minerals, vitamins (Landolt 

1989, Sarlin & Philip 2011), and the β-1-3 glucans of 

their cell wall (50-60%) of the cell wall (Suphantharika 

et al. 2003). 

In the shrimp gut, the effect of feed additives such 

as lipids (Zhang et al. 2014), carbohydrates (Qiao et al. 

2016), prebiotics (Gainza & Romero 2020), and 

probiotics (Sha et al. 2016, Du et al. 2019, Xie et al. 

2019) on the bacterial composition, metabolic potential 

of bacteria, and the functional interaction that occurs 

among them as a result of specific physiological 

conditions (Xing et al. 2013, Wang et al. 2015, Nagpal 

et al. 2016) can be determined by 16S rRNA gene-

based metagenomic analysis.  

Therefore, this study aimed to determine the effects 

of Bacillus thuringiensis and Candida parapsilosis on 

shrimp (Penaeus vannamei) resistance against V. 

parahaemolyticus and gut microbiota.  

MATERIALS AND METHODS 

Juvenile shrimp 

Shrimp obtained from a commercial farm were 

acclimatized for five days in 1,000-L plastic tanks with 

300-L of seawater filtered at 20 μm and salinity at 30. 

The animals were fed ad libitum thrice daily with 

commercial feed (30% protein; Nutrimentos Acuícolas 

Azteca®, Tlaquepaque, Jalisco, Mexico). The plastic 

tanks were cleaned by siphoning, and 50% of the water 

was changed daily. Water parameters (temperature, 

salinity, dissolved oxygen, and pH) were recorded daily 

throughout the acclimatization period. 

Preparation of B. thuringiensis IPNGSM1 and yeast 

C. parapsilosis Lt6 

The bacteria B. thuringiensis IPNGSM1 was grown in 

trypticase soy broth (TSB, BD Bioxon®, Mexico) with 

2.5% NaCl and incubated for 24 h at 32ºC, and 

centrifuged at 1,445 g for 20 min. The yeast C. 

parapsilosis Lt6 was cultivated in Man Rogosa and 

Sharpe (MRS, Difco®, Mexico) broth with 2.5% NaCl 

at 32°C for 48 h and centrifuged at 1,445 g for 20 min. 

The B. thuringiensis IPNGSM1 and C. parapsilosis 

Lt6 pellets were washed twice with sterile saline 

solution (2.5% NaCl) and re-suspended in the same 

saline solution. The bacterial suspension was adjusted 

to an absorbance of 1.0 in a spectrophotometer 

(PerkinElmer UV/VIS Spectrometer Lambda 25®). The 

bacterial count per milliliter at that absorbance was 

known previously. 

Preparation of inoculum from yeast C. parapsilosis 

Lt6 

One hundred microliters of C. parapsilosis Lt6 were 

inoculated in 500 mL of MRS broth (BD Difco®) with 

2.5% NaCl, and the culture was incubated for 48 h at 

32°C. The yeast culture was then centrifuged at 1,445 g 

for 20 min to obtain the pellet, which was washed twice 

with sterile saline (2.5% NaCl) and then re-suspended 

in the sterile saline. The yeast suspension was brought 

up to an absorbance of 1.0 in a spectrophotometer, 

which was adjusted to the concentration used in the 

bioassay (3×106 CFU L-1). 

Preparation of inoculum of V. parahaemolyticus 

V. parahaemolyticus IPNGS16 strain was isolated and 

characterized from shrimp farms during an AHPND 

outbreak in Mexico in 2014 by López-León et al. 

(2016). V. parahaemolyticus was grown in TSB with 

2.5% NaCl and incubated for 18 h at 30°C. The 

bacterial culture was centrifuged at 1,445 g for 20 min, 

and the pellet was re-suspended in saline (2.5% NaCl) 

solution. The bacterial suspension was read to an 

absorbance of 1.0 on a spectrophotometer (PerkinElmer 

UV/VIS Spectrometer Lambda 25). The bacterial count 

per milliliter at that absorbance was 186×106 CFU L-1. 

C. parapsilosis Lt6 added to the diet 

The commercial feed (Purina®, 35% protein) was 

pulverized in an electric food processor to add the 

additives; in this study, the C. parapsilosis Lt6 (3 g kg-1) 

yeast powder was used. A paste was formed with the 

mixture (commercial feed and baking powder) by 

adding distilled water and powdered gelatin (40 g of 

gelatin and 410 mL of distilled water kg-1 of feed), and 

https://www.sciencedirect.com/science/article/pii/S0044848621003215#bb0045
https://www.sciencedirect.com/science/article/pii/S0044848621003215#bb0045
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the pellets were re-made in a meat grinder. The pellets 

were dried in an oven at 98°C for 1 h and then 24 h at 

room temperature with a fan. Feed was prepared for 30 

days and stored at 4°C. For the control treatment, the 

additive of interest was replaced by cellulose. 

Experimental design 

Bioassay  

The bioassay lasted 30 days with shrimp weighing 8.4 

± 0.5 g (n = 15 shrimp tank-1). Plastic tanks (30 L) with 

20 L of filtered seawater (20 µm) were used as culture 

systems. Salinity was at 30, and the aeration was 

constant using air stones. Animals were fed two times 

a day (08:00 and 16:00 h) with Camaronina® (35% 

protein), adjusting the amount of feed according to the 

shrimp biomass. Additives were put in water and/or 

feed. The bioassay consisted of two treatments in 

triplicate as follows: I) control, commercial feed; II) 

commercial feed + CP (3 g kg-1 feed) + CP (3×106 CFU 

L-1) + BT (3×106 CFU L-1) (BY), each one every four 

days. Physicochemical parameters (temperature, 

dissolved oxygen, pH, and salinity) were measured 

daily. The tanks were siphoned every 4 days, and 50% 

of the water was replaced. Survival was determined 

daily. On day 26, the organisms were weighed, and gut 

samples for microbiota analysis were taken. On day 27, 

shrimp were challenged with V. parahaemolyticus 

IPNGS16 (500,000 CFU mL-1). The dead organisms 

were quantified for the final survival estimate at day 30.  

The specific growth rate (SGR) was obtained using 

the formula: 

% SGR = [(Ln w2 – Ln w1) / (t2 – t1)] × 100 

where w1 and w2 are the initial and final weights of the 

shrimp, respectively. The "t" means time. 

The physicochemical parameters in the control 

(temperature: 29.8 ± 0.3°C, dissolved oxygen: 5.2 ± 

0.05 mg mL-1, pH: 8.2 ± 0.05, and salinity: 30 ± 0.03) 

and treatment II (temperature: 30 ± 0.03°C, dissolved 

oxygen: 5.3 ± 0.08 mg mL-1, pH: 8.2 ± 0.06, and 

salinity: 30 ± 0.03) were within the optimal range. 

Metagenomic analysis 

On the 26 days, the shrimp were weighed, and five 

shrimp were taken from the three tanks of each 

treatment (2:2:1) to obtain intestine samples. The 

intestine of each shrimp was dissected, placed in a 1.5 

mL microcentrifuge tube with 1 mL of 96% (v/v) 

ethanol, and stored at -80ºC. The samples (five per 

treatment) were sent to the Research Center for Food 

and Development (CIAD, by its Spanish acronym, 

Mazatlán, Sinaloa, Mexico) for bacterial DNA 

extraction, library preparation, and sequencing in 

Illumina MiniSeq. 

Library preparation and sequencing of bacterial 

DNA 

Microbial DNA was extracted from intestine samples 

using the cetyltrimethylammonium bromide (CTAB) 

method (Azmat et al. 2012). The variable region V3 of 

the bacterial 16S rRNA gene was amplified by PCR 

with the primers 338F (ACT CCT ACG GGAGGC 

AGC AG) and 533R (TTA CCG CGG CTG CTG 

GCAC) (Huse et al. 2008). DNA amplification was 

carried out with the KAPA kit (2x KAPA HiFi HotStart 

ReadyMix) from Roche (Basel, Switzerland) in a 25-

μL reaction volume. PCR was performed in a thermal 

cycler using the following program (Mori et al. 2014): 

one cycle of 30 s at 95°C followed by 25 cycles, each 

one of 30 s at 95°C, 55°C for 30 s, 72°C for 15 s, and a 

final extension at 72°C for 7 min. AMPure XP 

magnetic beads were used to clean up amplicons from 

free primers and primer dimers. For sequencing, 

purified amplicons were associated with dual indices 

and Illumina sequencing adapters using the Nextera XT 

index kit (Illumina, San Diego, CA, USA). Illumina 

MiniSeq platform was used under standard conditions 

(300 cycles, 2×150 pair-end) to perform sequencing. 

Before their quantification, the libraries were purified 

with AMPure XP magnetic beads. Raw reads from 

Illumina MiniSeq sequencing were deposited in the 

NCBI through a sequence read archive (SRA) with the 

accession number PRJNA1116236. 

Gut microbial taxonomy, abundance, diversity, and 

potential metabolic analysis 

The raw sequences were cleaned with pair-end cleaner 

v.1.0.2 and then analyzed with the web-based Shaman 

(Volant et al. 2020) and Microbiome Analyst (Dhariwal 

et al. 2017, Chong et al. 2020) platforms for microbial 

taxonomy, abundance, and diversity. The analysis of 

read quality control, dereplication, removing singletons, 

removing chimera sequences, and grouping was carried 

out on the Shaman platform to construct operational 

taxonomic units (OTU). The OTUs shared by the three 

groups were determined using the Venn diagram 

analysis (http://jvenn.toulouse.inra.fr/app/example.html) 

(Bardou et al. 2014). On the Shaman platform, the reads 

obtained from the V3 hypervariable region of the 

bacterial 16S rRNA gene were annotated against the 

SILVA (version 138.1, https://bioweb.pasteur.fr/data? 

search=silva) database with a confidence threshold of 

0.8 (Volant et al. 2020). The analyses of the alpha 

diversity indices (Shannon, Simpson, Chao 1, ACE) 

http://jvenn.toulouse.inra.fr/app/example.html
https://bioweb.pasteur.fr/data
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and beta diversity [non-metric multidimensional 

scaling (NMDS) ordination method] indices were 

performed in the Microbiome Analyst platform to 

explore the effects of additives in bacterial community 

composition of cultured shrimp intestines. The beta 

diversity metric used was the Jaccard index, which 

considers Bray-Curtis's dissimilarity. 

The multimodule web platform iVikodak predicted 

the shrimp's bacterial metabolic potential (Nagpal et al. 

2016). The Global Mapper module (independent 

contribution algorithm) was used in this platform to 

infer functional profiles and perform meaningful 

analyses using the KEGG (metabolism) database for 

annotation. The Global Mapper module analyzes the 

metabolic pathways of microbial communities, 

estimates their relative abundance, quantifies the 

contribution of each taxon to a certain metabolic 

pathway, and identifies the main set of metabolic 

functions that define a particular environment (Nagpal 

et al. 2016). Bacterial metabolic pathways may impact 

host metabolism (Ibrahim et al. 2012, Rist et al. 2013), 

gene expression, and the immune system (Belkaid & 

Hand 2014, Spiljar et al. 2017). The interaction network 

analysis was determined to show the functional 

interaction between microorganisms (Nagpal et al. 

2016). 

Statistical analysis 

Data obtained from survival in percentage (arcsine 

transformed) and growth was analyzed by ANOVA 

using Statistica software (Version 7.0). If significant 

differences were found between control and treatment, 

Tukey's honestly significant difference (HSD) test was 

used to identify the source of these differences (P < 

0.05) (Daniel 1997). For alpha diversity (Shannon, 

Simpson, Chao 1, ACE), the Kruskal-Wallis test was 

used (P < 0.05). For beta diversity analysis of 

similarities (ANOSIM), a test (P < 0.05) was performed 

in the MicrobiomeAnalyst web-based platform.  

RESULTS 

White shrimp growth  

Shrimp growth was not significantly different (P > 

0.05) in treatment as compared with a control group 

(Fig. 1). Survival of shrimp challenged with V. 

parahaemolyticus IPNGS16 was significantly higher 

(P < 0.05) in BY treatment as compared to control (Fig. 

2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Specific growth rate (SGR) of P. vannamei. 

Treatments:  I) control (commercial feed); II) BY 

(commercial feed + CP (3 g kg-1 feed) + CP (3×106 CFU 

L-1) + BT (3×106 CFU L-1)). Data are shown as mean ± 

standard error. 

 

 

 

 

 

 

 

 

 

Figure 2. Survival of P. vannamei treated with bacilli and 

yeast and challenged with V. parahaemolyticus IPNGS16. 

Treatments: I) control (commercial feed); II) BY 

(commercial feed + CP (3 g kg-1 feed) + CP (3×106 CFU 

L-1) + BT (3×106 CFU L-1)). Data are shown as mean ± 

standard error. Different letters indicate significant 

differences (P < 0.05). 

 

The raw reads obtained from the NGS sequencing 

were 311,318 from the control and 174,146 from BY. 

The paired sequences per sample showed a quality 

score of Q 32.5. Of the total sequences, 89% were equal 

to or greater than 149 bp. The remaining amplicons 

after dereplication (159,727), singletons (42,691), and 

chimeric sequences (132) were removed. Then, the 

SILVA database obtained read clustering and 

taxonomic assignments at 97% identity. Among 457 

OTUs, 328 were shared by the two groups. Control 

showed 45 unique OTUs and BY 84 (Fig. 3). Good's 

coverage ranged from 99.56-99.97%, so most bacterial 

phylotypes were identified (Fig. 4).  

The relative abundance changes of the most relevant 

phyla, class, order, family, and genus were determined 

in shrimp gut. The class Bacilli, the order Lactobacilla-
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Figure 3. Venn analysis of the bacteria in the shrimp gut at OTUs level. Treatments: I) control (commercial feed); II) BY 

(commercial feed + CP (3 g kg-1 feed) + CP (3×106 CFU L-1) + BT (3×106 CFU L-1)). 

 

 

les, the family Leuconostocaceae, and the genus 

Weisella showed significant differences between the 

control condition and BY (P < 0.05) (Table 1). 

Table 2 shows the alpha indices (Shannon, 

Simpson, ACE, and Chao1) at the genus level, with no 

significant differences between the control and BY. 

The samples were grouped into two groups, 

corresponding to control and BY, but each showed a 

broader intradispersion, particularly among the BY 

samples (NMDS stress = 8.5148e-05; ANOSIM [R: 

0.222]; P > 0.20). The bacterial communities in the gut 

of shrimp from the BY treatment were not significantly 

different from those in the control group (P > 0.05) 

(Fig. 5). 

In the functional interaction network analysis, the 

network core comprises bacteria with big nodes and 

more positive or negative interactions. However, it was 

found that important bacteria genera for aquaculture 

were not found in the network core but only in the 

second, third, and fourth levels. In the control 

condition, Vibrio, Roseobacter, and Bacillus were 

found at the second level of the network. At the third 

level, Ruegeria, Aeromonas, and Pseudoalteromonas 

were found. At the fourth level, Pseudoruegeria, 

Pseudomonas, and Bdellovirio were found. In the BY 

treatment, Vibrio, Bacillus, Weisella, Roseobacter, 

Ruegeria, and Pseudoalteromonas were found at the 

second level. At the third level, Lactobacillus, 

Pseudoruegeria, and Aeromonas were found. At the 

fourth level, Bdellovibrio was found. In control 

conditions, Ruegeria, Pseudoalteromonas, and Bacillus 

showed negative interactions (red line) against Vibrio. 

In the BY treatment, Ruegeria showed negative 

interactions (red line) against Vibrio (Figs. 6-7). 

In the functional analysis profile, supported by the 

KEGG database, the metabolic category was the most 

abundant and important feature in shrimp gut bacteria. 

Metabolism in the control group was 65.39 ± 0.81% 

and BY 66.22 ± 1.12%, and no significant differences 

were observed (P > 0.05). The genera with high 

metabolism were Vibrio, Ruegeria, Roseobacter, and 

Pseudoruegeria. In BY treatment, metabolism in 

Vibrio showed a trend to decrease as compared to 

control. On the other hand, Ruegeria and Roseobacter 

in BY treatment showed an increase in their 

metabolism compared to the control group. In BY 

treatment, carbohydrate metabolism decreased in 

Vibrio compared to the control condition. In Ruegeria, 

Roseobacter, and Pseudoruegeria, carbohydrate metab-

olism showed a trend to increase. Lipid,  amino   acid,  and
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Figure 4. Rarefaction curve. Treatments: I) control (commercial feed); II) BY (commercial feed + CP (3 g kg-1 feed) + CP 

(3×106 CFU L-1) + BT (3×106 CFU L-1)). Control = S1, S2, S3. BY = S7, S8, S9. 

 

 

quorum sensing trended similarly to carbohydrates 

(Table 3).  

DISCUSSION 

Probiotics may improve the synthesis of vitamin 

cofactors or improve enzymatic production and nutrient 

assimilation activity that could increase growth 

(Banerjee et al. 2010, Qiu et al. 2018, Zheng et al. 

2021). However, in this study, using B. thuringiensis 

and C. parapsilosis did not induce a significant growth 

increase (not even a trend) in reared juvenile shrimp. 

Conversely, Rengpipat et al. (2000) reported a growth 

increase in postlarvae of P. monodon using Bacillus 

S11. Gullian et al. (2004) reported similar results in 

juvenile P. vannamei exposed to Bacillus S64. 

Aftabuddin et al. (2013) reported increased growth in 

P. monodon postlarvae after being treated with Bacillus 

megaterium through feed and water for 60 days. In the 

case of yeast, Álvarez-Sánchez et al. (2018) found an 

increase in shrimp growth due to Yarrowia lipolytica 

inclusion in the shrimp diet. 

Bacteria tested in previous studies, such as Bacillus 

subtilis, Bacillus S11, B. thuringiensis, and B. cereus, 

showed antagonism against Vibrio spp. (Rengpipat et 

al. 2000, Masitoh et al. 2016, Ang & Lal 2019). 

Antagonism in probiotic bacteria can occur by 

producing antimicrobial agents such as antimicrobial 

peptides, antibiotics, or siderophores to prevent 

diseases (Comba-González et al. 2018). However, 

antagonism can also be caused by microbial 

competition for nutrients for growth (Zhang et al. 

2018). Gatesoupe (1999) mentions that Bacillus sp. 

could multiply in the digestive tract of marine 

organisms, but its antagonistic effect must be 

maintained through repeated inoculations. The bacteria 

and yeast of this work were tested individually in the 

water of the white shrimp culture. They showed 

increased survival when challenged with V. 

parahaemolyticus IPNGS16 (Ceseña et al. unpubl. data).
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Table 1. Relative abundance (%) of bacteria in P. vannamei gut at phyla, classes, orders, families, and genera level. 

Treatments: I) control (commercial feed); II) BY (commercial feed + CP (3 g kg-1 feed) + CP (3×106 CFU L-1) + BT (3×106 

CFU L-1)). Data obtained from Microbiome Analyst. Data are reported as mean ± standard deviation. Black highlights show 

the significant differences between treatments.  

 

 Control (%) BY (%) P-value 

Phylum    

Proteobacteria 65.04 ± 3.82ab 71.87 ± 2.70a >0.05 

Bacteroidetes 19.60 ± 3.09   9.69 ± 2.06 >0.05 

Cyanobacteria     8.1 ± 2.07    4.31 ± 3.11 >0.05 

Firmicutes   0.85 ± 0.31   5.54 ± 3.40 >0.05 

Class    

Gammaproteobacteria 41.21 ± 6.73 37.01 ± 15.57 >0.05 

Bacteroidia 19.58 ± 3.10   9.68 ± 2.07 >0.05 

Alphaproteobacteria 23.35 ± 3.22 34.59 ± 18.11 >0.05 

Bacilli   0.04 ± 0.009b   5.25 ± 2.05a <0.05 

Order    

Rhodobacterales 21.06 ± 3.13 33.16 ± 18.53 >0.05 

Vibrionales 26.12 ± 10.05 24.87 ± 18.60 >0.05 

Flavobacteriales 13.66 ± 1.18   6.23 ± 1.28 >0.05 

Lactobacillales   0.02 ± 0.005b   2.85 ± 0.74a <0.05 

Family    

Rhodobacteraceae 17.67 ± 13.13 24.12 ± 10.11 >0.05 

Vibrionaceae 26.12 ± 10.05 24.87 ± 18.60 >0.05 

Flavobacteriaceae 11.70 ± 1.28   5.81 ± 1.69 >0.05 

Leuconostocaceae 0.006 ± 0.002b   2.83 ± 0.73a <0.05 

Genus    

Vibrio 26.02 ± 10.03 23.67 ± 18.50 >0.05 

Ruegeria 07.06 ± 1.25 10.67 ± 5.07 >0.05 

Pseudoruegeria   1.95 ± 0.38   3.59 ± 1.02 >0.05 

Weisella 0.007 ± 0.005b   2.96 ± 0.56a <0.05 

 

 

Table 2. Shannon, Simpson, ACE, and Chao1indices at 

genus level from the gut bacteria of P. vannamei. 

Treatments: I) control (commercial feed); II) BY 

(commercial feed + CP (3 g kg-1 feed) + CP (3×106 CFU 

L-1) + BT (3×106 CFU L-1)). Data obtained from 

Microbiome Analyst. Data are mean ± standard deviation. 

 
Indices Control BY 
Shannon     3.28 ± 0.30     3.03 ± 0.31 

Simpson     0.90 ± 0.04     0.87 ± 0.07 

Chao1 159.26 ± 06.07 156.90 ± 14.04 

ACE 159.71 ± 05.45 157.25 ± 13.61 

 

 

In our study, the use of B. thuringiensis inoculated in 

the water, and C. parapsilosis in water and feed 

increased the survival of juvenile shrimp P. vannamei 

after being challenged with V. parahaemolyticus 

IPNGS16. These findings reinforce what has been 

mentioned in some works regarding the use of 

microbial mixtures to improve the general health of the 

host, mainly in response to the specific synergistic 

effect of the mixture (Ouwehand et al. 2000, 

Timmerman et al. 2004, Zhao et al. 2018). 

In aquatic invertebrates, it is important to study the 

abundance and interactions of microorganisms, from 

water  and/or  diet,  with  the  host  (Petersen  &  Osvatic  
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Figure 5. Beta diversity of gut bacteria of P. vannamei at the genus level. NMDS based on Jaccard distances. Treatments: 

A) control (commercial feed); B) BY (commercial feed + CP (3 g kg-1 feed) + CP (3×106 CFU L-1) + BT (3×106 CFU L-1)). 

ANOSIM test, P = 0.20. The analysis was performed in Microbiome Analyst. 

 

 

2018) since it is known that microbiota is more affected 

by diet and host development than by the surrounding 

environment (Li et al. 2017). The most abundant phyla 

in this work were Protobacteria and Bacteroidetes, both 

in the control condition and treatment BY, with no 

significant differences. The predominant phylum was 

Proteobacteria with a relative abundance of 65-72%, as 

reported in previous studies carried out in shrimp 

cultured in laboratory-controlled conditions (Stephen et 

al. 2009, Qiao et al. 2016, Sha et al. 2016, Zhang et al. 

2016, Zheng et al. 2016, Vargas-Albores et al. 2017) 

and in commercial farms (Gainza et al. 2017, Gao et al. 

2019) demonstrating that this phylum is a core member 

of shrimp gut microbiota (Li et al. 2018). According to 

Rungrassamee et al. (2015) and Xiong et al. (2015), the 

abundance of the phylum Proteobacteria indicates 

efficient colonization of shrimp gut, and it is likely that 

this phylum degrades cellulose and agar and fixes 

nitrogen in the shrimp rectum (Zhou et al. 2024). 

Regarding the phylum Bacteroidota, the second most 

abundant phylum in the shrimp intestine, it increases 

when the amount of fat and protein in the diet increases 

(Daniel et al. 2014, Zafar & Saier 2021) and has a very 

important role in the shrimp intestine thanks to its 

ability to utilize nitrogenous waste, ferment carbohy-

drates, and biotransform steroids (Zhang et al. 2014, 

Larsbrink et al. 2016, Cheng et al. 2019, Zafar & Saier 

2021).  

Vibrio, Ruegeria, Pseudoruegeria, and Weissella 

were the most abundant at the genus level. The genus 

Vibrio showed a trend to decrease, whereas Ruegeria, 

Pseudoruegeria, and Weisella showed an increase in 

treatment BY compared to the control condition. Zheng 

et al. (2016) found a high relative abundance of 

Meridianimaribacter, Vibrio, Tenacibaculum, Ruegeria, 

and Pseudoalteromonas in the gut of healthy shrimp. 

The control of Vibrio in shrimp culture is very 

important as it could affect shrimp health (Gao et al. 

2019). However, some Vibrio strains are beneficial to 

shrimp health (Asfie et al. 2000), such as V. campbellii, 

which utilizes several organic carbon sources and can 

fix nitrogen (Huang et al. 2021), V. hepatarius and V. 

diabolicus that protect P. vannamei larvae against V. 

parahaemolyticus (Ramírez et al. 2022). Ruegeria genus
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Figure 6. Functional interaction networks at the genus level found in the P. vannamei gut under control (commercial feed) 

conditions. Red node: Proteobacteria; light green nodes: Bacteroidetes; green nodes: Planctomycetes; Sky blue nodes: 

Actinobacteria; olive green nodes: Verrucomicrobia; navy blue and black nodes: Firmicutes; brown nodes: Fusobacteria; 

gray nodes: Fibrobacteres. Large nodules indicate a high degree of interaction. The red lines indicate negative interactions 

(non-cooperative interaction), and the blue lines indicate positive interactions (cooperative interaction). The genera with 

the largest nodes also indicate their importance in the shrimp intestine microbial community (iVikodak). 

 

 

is a probiotic bacterium that showed antibacterial 

activity against V. anguillarum in a Danish turbot 

(Scophthalmus maximus) larval culture (Porsby et al. 

2008). Furthermore, Ruegeria has been shown to have 

tri-esterase activity, which can contribute to host 

digestive processes (Yamaguchi et al. 2016). 

Pseudoruegeria is a beneficial bacterium that could 

inhibit the growth of pathogenic Vibrio (Deris et al. 

2022). Weisella produces antimicrobial and antifungal 

substances against Gram-positive bacteria, extracellular 

polysaccharides, and nondigestible oligosaccharides 

with potential immunomodulatory effects (Srionnual et 

al. 2007, Hongpattarakere et al. 2012, Serna et al. 

2019). 

High microbial diversity provides functional 

redundancy, making an ecosystem more stable and 

resistant to stress (Turnbaugh et al. 2008, Le Chatelier 

et al.  2013).  Regarding  the  above,  the  total  species 



Bacillus thuringiensis and Candida parapsilosis protect white shrimp                                              329 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Functional interaction networks at genus level found in P. vannamei gut of BY (commercial feed + CP (3 g kg-1 

feed) + CP (3×106 CFU L-1) + BT (3×106 CFU L-1)) treatment. Red nodes: Proteobacteria; light green nodes: Bacteroidetes; 

green nodes: Planctomycetes; sky blue nodes: Actinobacteria; olive green nodes: Verrucomicrobia; navy blue and black 

nodes: Firmicutes; brown nodes: Fusobacteria. Large nodules indicate a high degree of interaction. The red lines indicate 

negative interactions (non-cooperative interaction), and the blue lines indicate positive interactions (cooperative 

interaction). The genera with the largest nodes also indicate their importance in the shrimp intestine microbial community 

(iVikodak). 

 

 

richness of a bacterial community in a sample can be 

determined with the ACE and Chao1 alpha indices 

(Hughes et al. 2005, Chao et al. 2016). On the other 

hand, the composition of the microbial community and 

the relative abundance of different species are 

determined by the Shannon and Simpson alpha indices 

(Schloss & Handelsman 2005, 2006, Schloss et al. 

2009, Kim et al. 2017). This study observed no 

significant impact of bacilli and yeasts on species 

richness, microbial composition, and relative 

abundance in shrimp's intestines since estimated 

indices did not show significant differences in all taxa 

between BY treatment and the control condition. 

Similarly, white shrimp fed diets with Bacillus subtilis 

E20 fermented soy meal did not show significant 

differences in intestinal microbial diversity (Cheng et 

al. 2019). Conversely, Zheng et al. (2021) found that 

feed with yeast and yeast extract affected the 

composition of P. vannamei gut microbiota.  
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Table 3. The KEGG functional categories (levels 1, 2, and 

3) of gut bacteria from control (commercial feed) and BY 

(commercial feed + CP (3 g kg-1 feed) + CP (3×106 CFU 

L-1) + BT (3×106 CFU L-1)) treatment. The analysis was 

performed in iVikodak. 

 

Functional categories Control (%) BY (%) 

General metabolism (L1)   
Pseudoruegeria 6.01 10.24 

Roseobacter 5.50 8.63 
Ruegeria 17.48 21.51 
Vibrio 51.66 39.90 

Others 19.35 19.71 
Carbohydrate metabolism 

(L2) 

  

Pseudoruegeria 7.30 12.22 
Roseobacter 5.37 8.28 
Ruegeria 16.91 20.44 

Vibrio 51.06 38.74 
Others 19.36 20.31 

Lipid metabolism (L2)   
Pseudoruegeria 5.32 9.18 
Roseobacter 5.28 8.39 

Ruegeria 16.84 20.98 
Vibrio 54.15 42.35 

Others 18.42 19.10 
Aminoacid metabolism 

(L2) 

  
Pseudoruegeria 5.89 9.87 

Roseobacter 6.57 10.14 
Ruegeria 20.80 25.16 

Vibrio 47.04 35.71 
Others 19.70 19.12 
Quorum sensing (L3) 

 

  

Vibrio 64.70 53.65 
Roseobacter 3.85 6.50 

Pseudoruegeria 4.19 7.67 
Ruegeria 12.01 15.86 
Others 

 

15.25 16.32 

 

According to Tuomisto (2010), beta diversity 

analysis can determine the difference in the 

composition of the bacterial community for different 

environments. In this work, no significant differences 

existed between the intestinal bacterial communities of 

the control condition and BY treatment from shrimp 

cultured in the laboratory. Similarly, these results 

coincide with those that Zheng et al. (2021) reported in 

white shrimp fed with yeast. However, when shrimp 

were fed a diet with 2% yeast extract, the gut microbial 

community differed from the shrimps of the control 

group. 

The functional interaction network (positive and 

negative interactions) between microorganisms and 

their synchronization occurs due to specific 

physiological conditions. In this sense, the color of the 

nodes indicates the phylum to which the genus 

represented belongs, and the size indicates its 

functional importance in the community (Nagpal et al. 

2016). In this study, the core (bacteria with large nodes 

and more interactions) did not present the genera of 

bacteria important for aquaculture, such as vibrios 

found in the second level of the control and the BY 

treatment. Regarding bacteria with probiotic potential, 

it was observed that in the control group, 

Pseudoalteromonas, Ruegeria, and Bacillus showed 

negative interactions (red line) against Vibrio, as shown 

with Ruegeria in the BY treatment. Li et al. (2016) 

mention that large and closely connected nodes tend to 

be functionally similar. 

In the shrimp gut, the microbial community had a 

high content of genes related to metabolism, human 

diseases, processing of genetic information, and 

organismal systems. However, metabolism was highly 

represented in this study. Wang et al. (2015) mentioned 

that overrepresented metabolism may be related to 

energy consumption to satisfy the physiological 

activities of the host. In this work, among the KEEG 

metabolism subcategories, most of the functional 

categories corresponded to carbohydrates, lipids, and 

amino acids. The presence of these functional 

subcategories in humans and turbot (S. maximus) 

showed that the metabolic potential of bacteria in the 

intestine is highly diverse and versatile (Xing et al. 

2013, Wang et al. 2015). The general metabolism and 

subcategories showed an increase in Ruegeria, 

Pseudoruegeria, and Roseobacter, as well as a decrease 

in Vibrio in BY treatment compared to control. The 

decrease in the abundance of Vibrio in BY treatment 

coincides with a lower metabolic activity of this genus. 

In addition to metabolic activity, another important 

functional category is quorum sensing (cellular 

communication that senses cell density) since there are 

several strains of pathogenic vibrios in shrimp culture, 

such as V. parahemolyticus, the causative agent of 

AHPND. Quorum sensing decreased in Vibrio and 

increased in bacteria with probiotic potential. In this 

regard, it is important to note that a significantly higher 

survival was observed in the BY treatment compared to 

the control condition.  

CONCLUSION 

In conclusion, juvenile shrimp exposed to B. 

thuringiensis and C. parapsilosis positively affected 

bacteria with probiotic potential and vibrios negatively 

at abundance, metabolism, and interaction levels. 

Consequently, testing these additives on commercial 

farms is feasible to see if the results obtained in the 

laboratory are replicated, especially in the survival of 
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organisms when there are problems with V. 

parahaemolyticus, the causative agent of AHPND. 
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