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ABSTRACT. Based on the classical Schaefer model, which considers a given constant effort and 

defines a sustainable catch by the existence of an equilibrium abundance, this article addresses the 

problem of gradually changing the effort so that the present stock is at balance or is in a value near to 

balance. More precisely, a law of effort adaptation is proposed based on the equilibrium effort-

population relationship of the classical model. The properties of the new effort-population balance are 

concluded, and comparisons are presented concerning the fishery's maximum sustainable yield, 

maximum economic yield, and net present value. 

Keywords: Schaefer's model; dynamic fishery effort; adaptive effort; maximum sustainable yield; 
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INTRODUCTION 

Fisheries have made significant contributions to 

achieving global food security and nutrition, with 

international efforts underway to meet the Sustainable 

Development Goals (FAO 2022). Ensuring the 

sustainable management of fisheries constitutes a key 

aspect that has been supported by both theoretical 

frameworks and reported real-world experiences (FAO 

1997). Fishing effort is a well-known statistical 

parameter that gauges the stress on fish stocks. This 

indicator quantifies the level of fishing activity that 

occurs at a specific moment, often represented by the 

fish search duration or the amount of fishing gear of a 

specific type used by the fishing group involved over a 

given time period (FAO 2019). Fishing effort is defined 

on an ordinal or numerical scale, allowing comparisons 

of alternative deployment scenarios on the target 

species in a given fishing area. 

The precautionary approach to fisheries manage-

ment emphasizes the presence of high uncertainty in 
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ecosystems and, therefore, encourages the implementa-

tion of conservative management procedures (FAO 

1995). Following this, the primary objectives of 

regulatory entities should aim to maintain the 

equilibrium of fish abundance through regulations of 

fishing effort, where attaining a higher level of 

equilibrium is generally associated with a reduction in 

effort. Nevertheless, non-regulated fishing activities, 

guided by this approach, could be directed to operate at 

an optimal level of effort that maximizes productivity 

(maximum sustainable yield, MSY) or revenue 

(maximum economic yield, MEY) (Grafon et al. 2010, 

Narayanakumar 2017). However, it is important to note 

that the same level of yield can be achieved with 

different levels of effort due to the nonlinearity of the 

effort-production (sustainable) relationship (Smith 

1969, Clark 1979). 

To be feasible and viable, the implementation of 

solutions to the current global problem of marine 

overfishing (Walters & Martell 1944, Beverton 1998, 

Clark 2006) needs to consider several socioeconomic  
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aspects. Therefore, to manage the impact of regulatory 

measures, the effort requires modifications at sustaina-

ble rates, allowing for the production of capture 

fisheries and the associated profits. In this sense, the 

introduction of an adaptive and continuous law to 

gradually adjust the effort, thereby achieving a stable 

population balance, is a necessity. Examples include 

the approach that considers feedback control of a given 

fishing effort (Matsuda & Abrams 2004) and the 

introduction of an effort that is dependent on target 

biomass (Ryzhenkov 2021). 

Socially responsible management always aims to 

prevent marine resource overexploitation while guiding 

and promoting sustainable fishing activity (Kates et al. 

2001, Córdova & Pinto 2002, Clark 2010). The 

Management Strategy Evaluation (MSE) assesses, 

through simulation, various potential harvesting control 

rules to achieve fishery objectives, which can be 

updated based on the observed results of the adopted 

strategy (Hordyk et al. 2021, FAO 2025). Another 

approach is Adaptive Fishery Management (AFM), 

which seeks to strike a balance between the exploitation 

and long-term conservation of abundance and ecosystem 

health by implementing an adaptive management 

effort. It is an open and practical management 

perspective, as it is flexible due to the capability to 

adapt as information and dynamics are understood 

(Walters 1986, Halbert 1993). In addition to 

monitoring, analyzing, and projecting the variables of 

interest, this adaptability also considers the involve-

ment of different interested actors (e.g. fishermen, 

scientists, and regulatory authorities), thereby granting 

implementation legitimacy. Recall that much of what is 

evaluated and agreed by the AFM involves effort 

changes. Regardless of the meaning and value that 

scientific views have or incorporate in the concept of 

adaptation (McLain & Lee 1996), in the practice of any 

adaptive management, the decisions generally translate 

into variation in the deployed fishing effort. 

In the mathematical modeling context, an adaptive 

effort is understood as an approach that transitions from 

considering effort as a parameter to a non-exogenous 

variable, in which its trajectory value responds to a 

dynamic rule. In this sense, Smith's model (Smith 

1969), which explains the tragedy of commons (Hardin 

1968), is an example of an adaptive effort, given that it 

is adapted to achieve utility increments. Models 

imposing control through closures constitute a way to 

implement adaptive changes in effort, as it is reduced 

within a time interval but spread over time (Córdova-

Lepe et al. 2012, Castro-Santis et al. 2016). 

In Reed (1991), an essay that presents and discusses 

the (perhaps) founding works of mathematical 

bioeconomics. Hotelling (1931), Gordon (1954), and 

Schaefer (1954) assured, "Indeed, it is only through the 

use of mathematical models that a rational discourse 

beyond the elementary level is possible on bioeconomic 

matters". At first glance, this statement appears 

exaggerated when the mathematical models mentioned 

by Gordon, Schaefer, and Hotelling are confronted with 

reality (data from specific fisheries), as general models 

do not adjust or adjust but with limited resolution. 

However, the value of these models lies in theorizing 

and providing a generic explanation of the essential 

patterns of the fishing phenomenon. These models have 

a strategic character that allows, through the 

aggregation of specificities, to advance to models with 

greater resolution possibilities, as would be the case 

when applying more tactical (e.g. control) or 

operational (e.g. projective) perspectives. 

In the context of a fishery in progress and applying 

some constant effort level, we introduce a way to 

resolve an interesting challenge: determining an 

adaptive rule for the effort that ideally leads quickly, 

but in an economically sustainable way, toward an 

equilibrium stock. Furthermore, we ascertain properties 

of the ultimate levels of effort, abundance, and harvest 

toward which our proposed system converges. 

Specifically, we understand how these limit values of 

the variables depend on the initial state of the system. 

Methodologically, to address our research inquiry, we 

employ a simple mathematical model, adopting the 

foundational Gordon-Schaeffer theory as a baseline 

idealization. We envision a resource that lacks 

structural complexities, follows the logistic law of 

natural growth, and maintains proportionality (through 

the effort parameter) between harvest (capture per unit 

of effort, CPUE) and biomass. In particular, the effort 

rule proposed (the adaptive one) is modeled by an extra 

differential equation. 

Finally, we declare an important motivation for this 

present work, an homage to our colleague and friend 

Eduardo González-Olivares, a mentor of many Latin 

American young researchers and one of the main 

introducers, through his articles, of the scientific area 

of the mathematical-bioeconomic perspective in Chile 

(González & Mena 1994, González-Olivares 1998, 

González-Olivares et al. 2009, Rojas-Palma & 

González-Olivares 2010, 2012). 

MATERIALS AND METHODS 

Regarding the methodological aspect, we will proceed 

only through the epistemic approach of mathematical 

modeling. So, we will consider a fishing resource with 

sufficient conditions of uniformity and standard growth 

to be able to be modeled by a (𝑟, 𝐾)-logistic equation. 
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In addition, with extraction conditions, i.e. fishing 

mortality, respecting the principle that the CPUE, a 

constant 𝐸0, is proportional to the biomass: 

𝑁′ = ℒ(𝑁) −  𝑞𝑁𝐸0 with ℒ(𝑁) = 𝑟𝑁(1 −  𝑁/
𝐾), and 𝑁0 = 𝑁(0)                                                                 (1) 

where N(t) represents the population abundance at the 

instant 𝑡, t ≥ 0, and the positive constant 𝑞 is a measure 

of the catchability of the resource. 

Let us note that the Equation 1, rearranging its 

terms, admits the following equivalent form: 

N′ = rN{Ne  −  N}/K with Ne = K(1 −  qE0/r)   (2) 

Thus, at infinite time, we see that 𝑁(𝑡) tends to 𝑁𝑒 

from any initial abundance 𝑁0, if E0 < 𝑟/q, see Figure 

1. That is, if the effort is limited, then 𝑁𝑒 is a globally 

stable positive equilibrium stock that decreases as 𝐸0 

increases; greater efforts imply extinction. 

Reversing the reading of the fact that any constant 

effort defines a transition to a population in equilib-

rium, we have that, at any time, any population 

abundance 𝑁 is an equilibrium when the effort depends 

on the size of the resource, which will be denoted as 

�̅�(𝑁), given by: 

�̅�(𝑁) = 𝑟(1 −  𝑁/𝐾)/𝑞                     (3) 

that is, if we replace this value in Equation 1, we obtain 

𝑁′ = 0.  

However, mobilizing impulsively and immediately 

the effort 𝐸0 to this equilibrium effort �̅� is not always 

possible in political-economic or simply technical 

terms. In this sense, we can assume that relative 

changes can only be made based on an evaluation (at 

each moment) of how distant, at any moment, the effort 

𝐸 is from �̅�, that is, considering a law of evolution of 

the type: 

E′ = α E{E̅(N)  −  E}                         (4) 

an expression that also assumes that the change is 

proportional (α is a scaling factor) to the value it 

presents. That is, it has a relative character. 

Noting that qNE̅(N) = ℒ(N), by replacing in (1), 

we get the differential system that follows: 

{
𝑁′ = 𝑞𝑁{�̅�(𝑁) −  𝐸}

𝐸′ = 𝛼𝐸{�̅�(𝑁) −  𝐸}
                  (5) 

defining a (𝑁(𝑡), 𝐸(𝑡)) the trajectory from any initial 

conditions (N0, E0). 

The model defined by Equation 5 was developed 

under a generalist approach and, therefore, does not 

consider specific units. Thus, for future implementa-

tions that consider specific fisheries, it will be neces- 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Representation of the natural growth ℒ(𝒩) and 

fishing mortality qE0N, as functions of population abun-

dance (horizontal axis), determining by intersection a 

unique stable equilibrium 𝑁𝑒. That is, from any positive 

initial abundance as 𝑁01 and 𝑁02, the stock converges to 

𝑁𝑒. Moreover, if the slope of the line 𝑞𝐸𝑁 is bigger than 

that of the tangent 𝑟𝑁, that is, if E0 ≥ r/q, then 𝑁𝑒 = 0. 

 

sary to explicitly define abundance or stock size, time, 

and other parameter units. 

RESULTS 

Let us note that a direct deduction of the dynamic 

regime (Eq. 5) is that, except for proportionality 

constants, the change per individual of 𝑁 and the 

relative change of 𝐸, are equal, that is: N′/N =
(q/α)(E′/E). This last equality, by direct integration, 

leads us to the relationship at any time: 

(𝑁/𝑁0)α = (𝐸/𝐸0)𝑞                      (6) 

Note that this relationship leads us to the possibility 

of decoupling the variables and reducing (Eq. 5) to the 

scalar initial value problem: 

𝑁′ = ℒ(𝑁) −  𝑓(𝑁),   𝑁(0) = 𝑁0, where 𝑓(𝑁) =
𝑞𝐸0 𝑁(𝑁/𝑁0)α/𝑞   

Now, about the geometry of the graph of 𝑓(⋅), as a 

function of 𝑁, we can say that 𝑓(0) = 0, 𝑓(0) =
0 (because  𝑓(𝑁)/𝑁 → 0 as N → 0), 

𝑓′ =
𝑓

𝑁
(1 +

α

𝑞
), 𝑓′′ =

𝑓

𝑁2 (1 +
α

𝑞
)

α

𝑞
 and {

𝑓

𝑁
}

′

=
α

𝑞

𝑓

𝑁2. 

Then, the function is increasing, convex, and the 

angle tan−1(𝑓(𝑁)/𝑁) increases with 𝑁. In addition, an 

important property is that 𝑁 > 𝑁0 if and only if 𝑓(𝑁) >
𝑞𝐸0𝑁 since this implies that the system transits to a 

lower (or resp. bigger) equilibrium level 𝑁∗ of 

abundance  in  comparison  with the constant one, i.e. 

(7) 
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Figure 2. The equilibrium 𝑁∗, on the abundance axis (horizontal), always exists by the equalization of the natural growth 

ℒ(𝑁) with the fishing mortality given by 𝑓(𝑁) (in blue). Note that 𝑁∗ is always between the levels of abundance 𝑁𝑒 and 

𝑁0. 

 

 

𝑁∗ < 𝑁𝑒  (or resp. >) when N0 < 𝐾 (resp. >). See 

Figure 2. 

About equilibrium 

To find a non-null equilibrium (𝑁∗, 𝐸∗) let us observe 

that 𝑁′ = 0, if we have ℒ(𝑁) = 𝑓(𝑁). This last 

equality has a unique solution: 𝑁∗ > 0, which is 

dependent on (𝑁0, 𝐸0), and is represented by the blue 

point at the intersection of the curves in Figure 2. Then, 

from Equations 2 and 6, the respective effort's equilib-

rium is: 

𝐸∗ = 𝐸0 (𝑁∗/𝑁0)α/𝑞 = 𝑟(1 −  𝑁∗/𝐾)/𝑞      (8) 

Denoting ℒ(⋅)  −  f(⋅), the right side of the 

differential equation in Equation 7, by 𝐺(𝑁)We have 

that ∂NG is equal to r(1 −  2N/K) − (f(N)/N)(α +
q)/q. Then, 

𝐺′(𝑁∗) =  −
𝑟

𝐾
{𝑁∗ +

𝛼

𝑞
(𝐾 − 𝑁∗)} < 0 

which proves that the equilibrium 𝑁∗ is globally stable. 

Since 𝜕𝑁∗
𝐸∗ > 0, that is, there is a positive correspond-

ence between abundance equilibrium and effort 

equilibrium; it follows that the pair (𝑁∗, 𝐸∗) is a global 

equilibrium of the system (Eq. 5). 

Noting that 𝜕𝑁0
𝑓(𝑁) < 0 and 𝜕𝐸0

𝑓(𝑁) > 0, it 

follows those larger initial stocks 𝑁0 determine a larger 

equilibrium 𝑁∗. Similarly, larger initial efforts 𝐸0 

determine a smaller equilibrium 𝑁∗. Both assertions are 

visualized in Figures 3a-b, respectively. 

Estimating the equilibrium 

Using the intersection of the tangent line to 𝑓(𝑁) at 

(𝑁0, 𝑓(𝑁0)) with the tangent line to the parabolic curve 

ℒ(𝒩) at (𝑁𝑒 , 𝐿(𝑁𝑒)), we obtain an upper bound 𝑁∗
+ for 

𝑁∗, see Figure 4. So, from the point in common between 

the tangent lines 

𝐿𝑓:   𝑦 = 𝑓′(𝑁0)(𝑁 −  𝑁0) + 𝑞𝐸0𝑁0 and 𝐿ℒ :   𝑦 =
ℒ′(𝑁𝑒)(𝑁 −  𝑁𝑒) + 𝑞𝐸0𝑁𝑒 

we get 

𝑁∗
+ =

(𝑓′(𝑁0)  −  𝑞𝐸0)𝑁0 + (𝑞𝐸0 − ℒ′(𝑁𝑒 ))𝑁𝑒

𝑓′(𝑁0)  −  ℒ′(𝑁𝑒)
 

Considering that 𝑓′(𝑁0) = (𝛼 + 𝑞)𝐸0 and 

ℒ′(𝑁𝑒) = −𝑟(1 −  2𝑞𝐸0), replacing in 𝑁∗
+, we obtain  

𝑁∗
+ =

𝛼𝐸0𝑁0 + 𝑟𝐾(1 −  𝑞𝐸0/𝑟)2

(𝛼 − 𝑞)𝐸0 + 𝑟
 

Furthermore, using the intersection of the parabola 

with the line joining the origin with (𝐾, 𝑓(𝐾)), we have 

a lower bound given by 

𝑁∗
− = 𝐾 {1 − 

𝑞𝐸0

𝑟
(

𝐾

𝑁0
)

𝛼/𝑞

} 

under condition 𝑞𝐸0/𝑟 < (𝑁0/𝐾)𝛼/𝑞 . 

About maximum sustainable yield (MSY) 

Let us note that the equilibrium production is given by 

𝑌∗ = 𝑓(𝑁∗) = 𝑞𝐸∗𝑁∗; this is 

𝑌∗ = 𝑟(1 −  𝑁∗/𝐾)𝑁∗ = 𝑟𝑞𝐾𝐸∗(1 −  𝐸∗/(𝑟/𝑞)),  (9) 

where 𝑁∗ and 𝐸∗ depend on the starting condition 

(𝑁0, 𝐸0). Then, this yield is maximum if (𝑁∗, 𝐸∗) 

reaches the value (𝑁𝑀𝑆𝑌 , 𝐸𝑀𝑆𝑌) ≔ (𝐾/2, 𝑟/(2𝑞)), 

determining 𝑌∗ = 𝑌𝑀𝑆𝑌 ≔ 𝑟𝐾/4, as expected. Then, 

the question is which 𝐸0, as a function of the other 

initial value 𝑁0, determines 𝑌∗ = 𝑌𝑀𝑆𝑌, the answer 

follows from 𝑓𝐸0 ,𝑁0
(𝑁∗) = 𝐾𝑟/4, this is: 
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Figure 3. Temporal dynamics of stock according to model (Eq. 5) for different values of initial conditions, a) 𝑁0 ∈
{30, 50, 70} with 𝐸0 = 0.9, and b) 𝐸0 ∈ {0.3,  0.6,  0.9} with 𝑁0 = 60. The common parameters are 𝑟 = 0.1, 𝐾 = 100, 𝑞 =
0.1, and α = 0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The intersection point between the respective 

tangents 𝐿ℒ(⋅) and 𝐿𝑓 to the natural growth curve ℒ in 

(𝑁𝑒, ℒ(𝑁𝑒)) and fishing mortality 𝑓(⋅) in (𝑁0, 𝑓(𝑁0)) 

stands out in yellow, which allows obtaining the upper 

bound 𝑁∗
+ at the value of 𝑁∗. 

𝐸0𝑀𝑆𝑌
= 𝐸𝑀𝑆𝑌 (

𝑁0

𝑁𝑀𝑆𝑌
)

𝛼/𝑞

=
𝑟

2𝑞
(

𝑁0

𝐾/2
)

𝛼/𝑞

    (10) 

which is a growing and concave (resp. convex) curve if 

𝛼 <  𝑞 (resp. 𝛼 >  𝑞) and is shown, respectively, in the 

blue dashed (resp. dotted) line in Figure 5. 

So, considering that. 𝐸0 could be a parameter that 

admits a control margin; let us examine the sensitivity 

of 𝑌∗ to said  initial parameter.  Using Equation 9 and 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Comparison, on the map of initial abundance 

(vertical axis) and initial effort (horizontal axis) 

possibilities, of the equilibrium populations and the 

respective productions they determine between the case of 

constant effort and that of adaptive effort. In black, the 

plot of the line 𝑁0/𝐾  +   𝐸0/(𝑟/𝑞) = 1 to which the non-

null equilibrium (𝑁∗, 𝐸∗) belongs. An initial condition on 

the blue line, dashed if 𝛼 > 𝑞 or dotted if 𝛼 <  𝑞, deter-

mines convergence to the central point (𝑁𝑀𝑆𝑌 , 𝐸𝑀𝑆𝑌) =
(𝐾/2, 𝑟/(2𝑞)). 

 
1

𝐾

𝜕𝑁∗

𝜕𝐸0
+

𝑞

𝑟

𝜕𝐸∗

𝜕𝐸0
= 0, 

we get 
𝜕𝑌∗

𝜕𝐸0
= 2𝑞

𝜕𝐸∗

𝜕𝐸0
{𝑁∗  − 

𝐾

2
} = 𝑞𝐾

𝜕𝐸∗

𝜕𝐸0
{1 − 

𝐸∗

𝑟/(2𝑞)
}   (11) 

a b 
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Then, the first-order condition for an optimal 

𝜕𝐸0
𝑌∗ = 0 implies the equilibrium (𝑁∗, 𝐸∗) equal to 

(𝑁𝑀𝑆𝑌 , 𝐸𝑀𝑆𝑌) ≔ (𝐾/2, 𝑟/(2𝑞)), and 𝑌∗ equal to 

𝑌𝑀𝑆𝑌 = 𝑟𝐾/4, as expected. 

Since                   
𝜕𝐸∗

𝜕𝐸0
=

𝐸∗/𝐸0

1+(𝛼𝐾/𝑟)(𝐸∗/𝑁∗)
> 0, 

if 𝑁∗ > 𝐾/2 (or equivalently 𝐸∗ < 𝑟/2𝑞), it follows 

𝜕𝐸0
𝑌∗ > 0. Symmetrically, if 𝑁∗ < 𝐾/2 (or equiva-

lently 𝐸∗ > 𝑟/2𝑞), then 𝜕𝐸0
𝑌∗ < 0. Therefore, the point 

(𝑁𝑀𝑆𝑌 , 𝐸𝑀𝑆𝑌) marks the maximum sustainable yield 

when we have Equation10. See Figure 6. 

About maximum economic yield (MEY) 

Assuming a constant cost for each unit of effort 

deployed, we find that the cost function of the fishery 

(with adaptive effort) is 𝑐𝐸 and tends to the value 𝐶∗ =
𝑐𝐸∗. Thus, the profit (utility) per unit of time at each 

instant, if a unit price 𝑝 per unit of capture is 

considered, is given by: 

𝑈 = 𝑝𝑌 −  𝑐𝐸 where 𝑌 = 𝑞𝐸𝑁, 

an expression that, when the population-effort duo 

(𝑁, 𝐸) stabilizes, tends to 𝑈∗ = 𝑝𝑌∗ − 𝑐𝐸∗ = {𝑝𝑞𝑁∗ −
𝑐}𝐸∗, which will be positive if 𝑁∗ > 𝑐/(𝑝𝑞). 

Notice that, from Equation 11, it is as follows. 

𝜕𝑈∗

𝜕𝐸0
=

𝜕𝐸∗

𝜕𝐸0
{2𝑝𝑞 (𝑁∗  − 

𝐾

2
) − 𝑐}

=
𝜕𝐸∗

𝜕𝐸0
{𝑝𝑞𝐾 (1 − 

𝐸∗

𝑟/(2𝑞)
) − 𝑐} 

Then, 𝜕𝐸0
𝑈∗ ≥ 0 if only if 𝑁∗ > 𝑁𝑀𝐸𝑌 , or equiva-

lently 𝐸∗ < 𝐸𝑀𝐸𝑌, with 

𝑁𝑀𝐸𝑌 ≔
𝐾

2
{1 +

𝑐

𝑝𝑞𝐾
} and 𝐸𝑀𝐸𝑌 ≔

𝑟

2𝑞
{1 −

𝑐

𝑝𝑞𝐾
} 

As is known, we have 
𝑁𝑀𝐸𝑌

𝑁𝑀𝑆𝑌
> 1,

𝐸𝑀𝐸𝑌

𝐸𝑀𝑆𝑌
< 1 and 

𝑁𝑀𝐸𝑌

𝑁𝑀𝑆𝑌
+

𝐸𝑀𝐸𝑌

𝐸𝑀𝑆𝑌
= 2 

Thus, if (𝑁∗, 𝐸∗) reaches the point (𝑁𝑀𝐸𝑌 , 𝐸𝑀𝐸𝑌), 

we have maximum profit, which occurs when the 

dependence on the initial effort 𝐸0 respect 𝑁0 is given 

by: 

𝐸0𝑀𝐸𝑌
= 𝐸𝑀𝐸𝑌 (

𝑁0

𝑁𝑀𝐸𝑌
)

𝛼

= 

𝐸0𝑀𝑆𝑌 (1 − 
𝑐

𝑝𝑞𝐾
) / {1 +

𝑐

𝑝𝑞𝐾
}

𝛼/𝑞
              (12) 

Comparing net present values (NPV) 

It is interesting to compare the cases of fixed effort and 

adaptive one, the intertemporal economic profit in 

some determined time horizon [0, 𝑇], or in perpetuity 

[0, ∞]. To accomplish this, let us consider the sum of 

the net present values of 𝑈(𝑡) assuming some discount 

rate 𝛿 > 0: 

𝑁𝑃𝑉 = ∫ (𝑝𝑌(𝑡)  −  𝑐𝐸(𝑡))𝑒−𝛿𝑡𝑑𝑡
𝑇

0

 

Figure 7, a 3×3 matrix of graphs, numerically 

compares the values of the 𝑁𝑃𝑉 of the adaptive model 

(Eq. 5) with the standard one (Eq. 1) for different 

combinations of price 𝑝 and cost 𝑐, and discount rates 

𝜌 equals 5, 10, and 15% (firs, second and third columns 

respectively), with equality in all parameters shown in 

the Table 1. 

Table 1. Common parameters for plots in Figure 7. 

 

𝑟 𝐾 𝑞 α 𝑁0 𝑇 

0.9 100 0.1 0.2 60 30 

As an initial effort, we consider the adaptive model 

𝐸0𝑀𝑆𝑌  (Fig. 7, first matrix row) and EMSY for the 

standard model (Fig. 7, second matrix row). 

We note that for any pair (𝑐, 𝑝), the NVP is greater 

than the corresponding standard, according to the 

comparison between the first and second rows of Figure 

7, which is also reflected by their difference in the 

grayscale of Figure 7, third row. That is, given an initial 

stock 𝑁0, a fishery with optimal constant effort 𝐸𝑀𝑆𝑌 , 

can rent less if we compare it with the alternative of 

adaptive effort that begins with the effort given by 

𝐸0𝑀𝑆𝑌 , defined in Equation 10, and reaches, as a limit, 

the value 𝐸𝑀𝑆𝑌 . 

DISCUSSION 

Our approach corresponds to a strategic mathematical 

model, that is, a generalist type that combines 

explanatory capacity with technical simplicity (i.e. a 

model that, although simple in structure, is capable of 

capturing the essence of the phenomenon), which is in 

contrast with tactical and operational models aimed to 

represent specific fisheries, and therefore that should 

consider a higher resolution associated to those specific 

realities, allowing to obtain more accurate predictive 

potential. The economic approach proposed by M.B. 

Schaeffer is largely based on the formulation and 

analysis of Equation 1, serving as a clear example of a 

strategic model. Following this, when aiming to model 

and draw conclusions about particular fisheries and 

scenarios with increasing complexity, future versions 

of our model (Eq. 5) should consider enhancing the 

robustness of the variables of interest and their 

structural relationships. For instance, incorporating the 

idea of adaptive effort into the more robust and 

validated models of fisheries that the literature offers.



524                                                             Latin American Journal of Aquatic Research 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Temporal dynamics of the model (Eq. 5) for different initial conditions (𝑁0, 𝐸0), where 𝑁0 ∈ {30, 50, 70} and 

𝐸0 = 𝐸0𝑀𝑆𝑌 according to (10). Particularly, 𝐸0 ∈ {0.1687, 0.4251, 0.7299}. The common parameters are 𝑟 = 0.2, 𝐾 =
100, 𝑞 = 0.3, and 𝛼 = 0.4. In a), 𝑁𝑀𝑆𝑌 = 50 and b) 𝐸𝑀𝑆𝑌 = 0.33. 

 

 

In line with this, a case of interest would be to 

examine the response of the adaptive effort model in 

the event of significant issues affecting fisheries, such 

as bycatch and/or discarding. As mentioned previously, 

this requires incorporating structural modifications into 

our model, which is a pending challenge for future 

studies. 

We note that in the case of constant effort, if this is 

excessive, specifically 𝐸0 > 𝑟/𝑞, then the population 

of resources becomes extinct. However, in the case of 

adaptive (variable) effort, the system always transits to 

a limited effort that determines a non-zero equilibrium 

population 𝑁∗. 

Regarding population levels, let us note that if 

𝑁0 <  𝑁𝑒 (resp. >), we find that the adaptive effort 

causes the population to grow (resp. decrease) towards 

equilibrium. However, this is less (resp. greater) than 

the constant stress case, that is, 𝑁∗ ∈ (𝑁0, 𝑁𝑒) (resp. 
(𝑁𝑒 , 𝑁0)), see Figure 2. However, this is an aspect that 

is reversed if we observe what happens concerning 

sustainable production (in equilibrium) per unit of time. 

In effect, we have 𝑌∗ ≔ 𝑓(𝑁∗) > 𝑌0 ≔ 𝑞𝐸0𝑁𝑒 when 

𝑁0 < 𝑁𝑒 , and conversely 𝑌∗ < 𝑌0 if 𝑁0 > 𝑁𝑒 . 

Moreover, for an initial stock 𝑁0, there exists an initial 

effort given for Equation 10, which implies 𝑌∗ =
𝑌𝑀𝑆𝑌 = 𝑟𝐾/4. 

 

 

 

Considering some caveats, our results could be used 

for informed decision-making by scientific committees 

and sectoral authorities. The model could provide a first 

qualitative evaluation, adding information when 

establishing fishing efforts. Note that when considering 

the actual net value of a fishery that is dependent on the 

effort distribution through time, Figure 7 shows a 

comparison between a case of constant effort that tends 

to the maximum sustainable yield 𝐸𝑀𝐸𝑌. In general, for 

a greater portion of the parameter space (cost, price), 

the adaptive case with the initial effort given by 

Equation 10 is optimal in its present value; the 

exception is when the cost of the effort unit is relatively 

very low compared to the price, suggesting that in 

fishery regulation, under a situation of stable inputs and 

outputs, the limitation of the maximum effort should 

aim to the adaptive type governed by Equation 10. 

An interesting future challenge, in the case of 

fisheries with regulated effort, whether by authorities or 

owners, is to mathematically explore (via strategic 

models as those exposed in this work) the dynamic 

expression of technically realistic effort trajectories that 

manage to combine the needs for economic utility and 

a responsible perspective. The last is on both the 

ecological and cultural aspects of the social 

environment.

 

 

a b 

a 
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Figure 7. Net present values (NPV) associated with a) the model 1 (Eq. 1) and b) the model 5 (Eq. 5) for different parameter 

combinations of cost 𝑐 and price 𝑝, and taking 𝐸0 = 𝐸𝑀𝑆𝑌 and 𝐸0 = 𝐸0𝑀𝑆𝑌, respectively. The color scale represents the 

𝑁𝑉𝑃(𝐸𝑀𝑆𝑌) value. The common parameters are 𝑟 = 0.1, 𝐾 = 100, 𝑞 = 0.1, and 𝛼 = 0.2, with  𝑁0 = 60 and 𝛿 = 1. In c), 

the NPV are compared. The black dashed line indicates 𝑁𝑉𝑃(𝐸𝑀𝑆𝑌) = 0. 
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