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ABSTRACT. This study introduces a novel deep learning methodology for identifying fish species in central-

southern Chile's pelagic and demersal fisheries. Using a dataset of 8,118 high-resolution images encompassing 

18 species, two Convolutional Neural Networks (CNNs) were developed: a custom-designed CNN, which 

achieved an overall accuracy of 86% (95% CI: [0.8355; 0.8826]), and an adapted VGG16 model, which reached 

95% (95% CI: [0.9355; 0.9651]) when tested on the same set of 811 images. While both models perform 

strongly, challenges persist for specific species, particularly Brama australis and Strangomera bentincki, with 

33 and 53% classification rates in the VGG16 model, highlighting opportunities for dataset enrichment and 

algorithmic refinements. Additionally, Gradient-weighted Class Activation Mapping (Grad-CAM) was 

employed to visually interpret the decision-making process of the CNN, providing insight into the regions of 

the image most relevant to classification. Developed using the Keras API and TensorFlow framework within the 

R programming environment, our approach underscores the importance of advanced computational tools in 

enhancing species classification. The results lay the groundwork for future expansions into comprehensive 

frameworks utilizing computer vision to recognize fish species on board, quantify catches, and detect discards 

and bycatch. These advancements could significantly benefit Fisheries Observer programs, enhancing 

enforcement and aiding sustainable fisheries management. Ultimately, this work promotes efficiency and 

efficacy in monitoring, fostering a sustainable future for marine biodiversity in Chile and potentially other 

regions and wider marine ecosystems. 
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INTRODUCTION 

Bycatch-the unintentional catch of non-target species 

within fishing operations-remains a critical issue in 

marine conservation and sustainability due to its 

capacity to degrade marine ecosystems (Kelleher 2005, 

Soykan et al. 2008, Davies et al. 2009, Komoroske & 

Lewison 2015). Discards, a subset of bycatch, refer to 

the fraction of the overall catch thrown back into the 

sea (Kelleher 2005). Because discarding can be a 

wasteful practice and conflict with sustainable fishing 

objectives, the FAO Code of Conduct for Responsible  
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Fisheries (FAO 1995) has articulated guiding principles 

and international standards to address its impacts. 

These include: i) considering discard impacts when 

applying precautionary approaches to fisheries mana-

gement; ii) systematically collecting and reporting 

discard-related information; iii) collecting high-quality 

ecosystem and fisheries data to assess discard status; iv) 

promoting technological and operational methods to 

minimize discards; and v) implementing observer and 

inspection programs to foster compliance with manage-

ment measures. 
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In Chile, fishing activities contribute nearly 0.7% to 

the national gross domestic product, with total landings 

averaging around 2 million tons over the past five years 

(SUBPESCA 2022). Of this, 60% originate in the 

central-south region. Pelagic species-such as anchovy 

(Engraulis ringens), common sardine (Strangomera 

bentincki), and jack mackerel (Trachurus murphyi) 

account for roughly 56% of these landings, while 

demersal species-like common hake (Merluccius gayi) 

and hoki (Macruronus magellanicus) contribute about 

4%. Under Chile's General Law of Fishing and 

Aquaculture, discards must be included when 

determining annual global catch quotas (Paragraph 1 

Bis, Law N°20.625), a critical measure to ensure 

sustainable exploitation of marine resources. Although 

global bycatch rates have been estimated to reach 

40.4% (Davies et al. 2009), discard rates in some 

Chilean fisheries, such as the southern hake 

(Merluccius australis), were estimated to be around 

19% during 2000-2003. To address such challenges, 

Chile began incorporating bycatch and discard 

observations into its fisheries monitoring programs in 

2014, starting with pelagic and extending to demersal 

fisheries. By 2017, bycatch and discard reduction plans 

had been formally integrated into observer and 

monitoring programs for major fisheries, implemented 

by the Instituto de Fomento Pesquero (IFOP), involving 

administrative and conservation measures, the adoption 

of technologies aimed at reducing discards, robust 

monitoring programs, the evaluation of effectiveness of 

these measures, training and awareness initiatives, and 

a code of best practices (Román et al. 2022, Vega et al. 

2022). 

Among the technological applications supporting 

the observation and monitoring of fishing activities, 

electronic monitoring has emerged as a cost-efficient 

tool for reducing discards and bycatch (Van Helmond 

et al. 2020). However, integrating such tools and 

electronic reporting, methodological, computational, 

and connectivity advancements presents new 

challenges. Chief among these is efficiently handling 

the vast amounts of data generated while transforming 

it into actionable information and knowledge for 

fisheries management (Komoroske & Lewison 2015, 

Bradley et al. 2019, Gilman et al. 2019, 2020). 

Conventional data analysis methods often prove 

inadequate for mining all relevant insights from large-

scale datasets. Consequently, establishing appropriate 

protocols and techniques for monitoring and 

diagnosing catches, discards, and bycatch becomes 

essential for providing scientific guidance and 

supporting sustainable management. In this context, 

emerging deep learning and computer vision 

techniques offer promising new avenues for automated 

identification, real-time data processing, and enhanced 

ecosystem understanding through improved detection 

of non-target species. These advancements can 

substantially benefit resource-limited fisheries manage-

ment strategies by reducing human error, bias, and 

operational expenses. 

Numerous studies have already demonstrated the 

potential of advanced computer vision methods for 

automated fish recognition and segmentation. Lu et al. 

(2020) achieved 96% accuracy using VGG16 to 

classify tunids, billfishes, and sharks in deck images. Ju 

& Xue (2020) reported a 97% accuracy with a 

customized AlexNet (FAN) for fish species. Similarly, 

Ovalle et al. (2022) used Mask R-CNN segmentation 

and MobileNet-V1 measurement to achieve an average 

accuracy of 98% under low overlapping conditions. 

Dos Santos & Gonçalves (2019) introduced a three-

branched Convolutional Neural Networks (CNN) 

model for 68 fish species, reaching up to 87% accuracy 

in species-level classification. Villon et al. (2018) and 

Xu et al. (2021) also documented high accuracies (98% 

and over 91%, respectively) using CNNs or transfer 

learning methods. In Japan, Miyazono & Saitoh (2018) 

employed a transfer learning model based on CIFAR-

10 and AlexNet for 50 species, with 71 to 91% 

accuracy. 

Building on these developments, this article 

proposes an automated deep-learning approach for fish 

species identification in Chile's central-south pelagic 

and demersal fisheries. In particular, 18 fish species are 

classified from self-collected images using CNNs. The 

objective is to establish a robust methodology 

demonstrating how these computational methods can 

advance fisheries management, laying the foundation 

for a more comprehensive framework. Such a 

framework would recognize fish species on board and 

aid in quantifying catches and monitoring discards and 

bycatch. This integrated system is expected to bolster 

the effectiveness of Fisheries Observer programs, 

enhance compliance, and promote sustainable resource 

use across Chilean fisheries and wider marine 

ecosystems. Ultimately, the approach aims to improve 

the estimation of bycatch and discards through real-

time detection and quantification, thus supporting more 

informed mitigation strategies and policy decisions. All 

code developed in this study is available in our GitHub 

repository (Alvarado & Plaza-Vega 2023), provided as 

supplementary material. 
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MATERIALS AND METHODS 

Data 

In this research, we utilized a comprehensive dataset 

composed of 8,118 high-resolution images (each with 

dimensions of 1,200×800 pixels), featuring 18 species 

from the central-southern regions of Chile that are 

objective and non-objetive fisheries (i.e. accompanying 

fauna), bycatch, and discard species are considered 

from both pelagic and demersal fisheries. These images 

were meticulously categorized by expert scientific 

observers, playing a pivotal role in the continuous 

monitoring activities within the fisheries sector. For 

detailed information on the specific species included in 

this research and the number of images corresponding 

to each species, please refer to Table 1. 

The dataset is characterized by its diversity in 

background settings and illumination conditions, as 

illustrated in Figure 1. This study encompasses self-

collected images acquired as part of an initiative to 

advance technological advancement in the monitoring 

programs of pelagic and demersal fisheries conducted 

by the IFOP between March 2020 and October 2022. 

To optimize the 8,118 images for model develop-

ment, the dataset was partitioned into training, 

validation, and testing subsets according to a 70-20-10 

ratio. Owing to the limited availability of images for 

certain species, -Brama australis, in particular (Table 

1)-data augmentation techniques (Shorten & 

Khoshgoftaar 2019) were applied to enhance model 

generalization and mitigate overfitting. Specifically, the 

following transformations were incorporated: 

 Flipping (horizontal/vertical): random flips simulated 

the specimens' varying orientations, accounting for 

different capture angles and handling positions.   

 Rotation: images were rotated within a predefined 

angle range (±15°) to replicate natural inclinations 

typically observed in field scenarios.   

 Shifting: minor horizontal and vertical shifts (up to 

10% of the image dimensions) addressed off-center 

captures commonly occurring during photographic 

collection.  

 Shearing: a moderate 0.2 shearing factor introduced 

slight skewing, accommodating variations in camera 

angles. 

 Zooming: Small zoom factors (10-20%) reproduced 

conditions where specimens appear at different scales 

within the frame. 

These transformations effectively expanded and 

diversified the training subset, enhancing the model's 

robustness to the inherent variability of fisheries data.  

Table 1. Species included in the study, with their respec-

tive number of images available. 

 

Species Number of images 

Brama australis            30 
Cilus gilberti             600 

Engraulis ringens          343 

Genypterus chilensis       99 

Merluccius gayi gayi       281 

Scomber japonicus          247 

Strangomera bentincki      186 

Stromateus stellatus       172 

Thyrsites atun             1539 

Trachurus murphyi          914 

Epigonus crassicadus       454 

Seriorella punctata        313 

Genypterus maculatus       181 
Paralichtys microps        389 

Apristurus nasutus         592 

Caelorinchus fasciatus     826 

Eleginops maclovinus       662 

Bovichtus chilensis        290 

Total 8,118 

 

To balance computational efficiency with image clarity, 

each image was resized from 1,200×800 to 500×500 

pixels, ensuring sufficient resolution for reliable 

species identification without unduly increasing com-

putational overhead. 

Methodology 

Our methodology employs two distinct CNNs 

(Goodfellow et al. 2016), implemented via the Keras 

API (Chollet et al. 2015) with a TensorFlow (Abadi et 

al. 2015) back end, all within the R language 

environment (R Core Team 2022). Leveraging the 

computational power of an NVIDIA GeForce RTX 

4080 GPU, both models were executed in GPU mode, 

substantially curtailing the necessary training and 

testing processing times, thus enhancing the efficiency 

and feasibility of our approach. 

Customized Convolutional Neural Network (CNN) 

A customized CNN was designed to identify 

morphological features in fish species images from 

central-southern Chilean fisheries. The model (Fig. 2), 

consists of convolutional layers with 32, 64, 64, 128, 

and 128 filters, alternated with max-pooling layers, 

extracting hierarchical features from the images while 

improving computational efficiency through spatial 

dimension reduction. Utilizing the rectified linear unit 

(ReLU) activation function, the model navigates non-

linear feature spaces, learning complex patterns from 

the data. During training, categorical crossentropy and 
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Figure 1. Examples of images included in this study, with their respective scientific names.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Custom Convolutional Neural Network architecture. ReLU: rectified linear unit.  

 

 

the RMSprop optimizer (Tieleman 2012) (with a 

learning rate of 10-4) were employed to balance 

convergence speed and stability. Validation, employing 

augmented images, ensured model generalization and 

mitigated overfitting. The final layers use a Softmax 

activation function, outputting probability distributions 

across 18 fish species categories. Dropout layers 

(Srivastava et al. 2014) were incorporated to prevent 
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overfitting, randomly nullifying 25% of neurons during 

training, enhancing model robustness and predictive 

capabilities across varied inputs. 

Adapted VGG16 Network 

The VGG16 model, developed by the Visual Geometry 

Group at the University of Oxford (Simonyan & 

Zisserman 2014), was selectively adapted for the 

specific task of fish species classification in our study. 

Initially pre-trained on the substantial ImageNet dataset 

(Russakovsky et al. 2015), we tailored the model to our 

unique classification context, while specifically 

focusing our adaptations on its fully-connected top. As 

depicted in Figure 3, the modifications included the 

addition of convolutional layers with 64 filters and a 

3×3 kernel size, utilizing a ReLU activation function. 

The implementation of global average pooling 

followed this, as did the inclusion of dense layers and 

the application of dropout for regularization. The 

adaptation culminated in a final dense layer featuring 

18 nodes, each representing a fish species, and 

employed a Softmax activation function to produce 

probability distributions across the species categories. 

RESULTS 

Building upon the insights from Alsmadi & 

Almarashdeh (2022), Barbedo (2022), and Rubbens et 

al. (2023), and the employment of accuracy as a 

classification metric is notably prevalent in marine 

sciences, particularly in image classification applica-

tions. This metric's appeal lies in its clear and direct 

approach to quantifying a model's performance, 

making it an invaluable marine science tool. In the 

specific context of fish image classification, where the 

primary objective is accurately identifying species 

through visual data, accuracy directly measures a 

model's effectiveness, reflecting the proportion of 

correct identifications made. 

During the training phase, the custom CNN model 

demonstrated a training loss near 0.6, with the 

validation loss slightly lower, which reflects a well-

tuned learning process with minimal overfitting, which 

was further corroborated by the accuracy metrics. Both 

the training and validation accuracy levels were 

observed to be above 80%, indicating the model's 

proficiency in accurately classifying the species, as 

seen in Figure 4. 

In comparison, the VGG16-based pretrained model, 

adapted to the specificities of the Chilean fish species 

dataset, showed a refined performance. It registered a 

training loss of around 0.5 and a notably lower 

validation loss of approximately 0.4, suggesting a more 

efficient learning curve and a better generalization 

capability than the custom CNN model. The accuracy 

measures were particularly high, with the training and 

validation accuracy surpassing 80%, as depicted in 

Figure 4. 

The evaluation of the models using confusion 

matrices is shown (Figs. 5-6). The matrices provide a 

comprehensive view of the classification performance 

across the different species in the dataset. 

The confusion matrices for the custom CNN model 

(Fig. 5) and the adapted VGG16 model (Fig. 6) are 

provided to demonstrate the prediction distributions 

across various classes. Figure 5 shows the classification 

matrix for the custom CNN model tested on 811 images 

spanning 18 species, achieving an overall accuracy of 

approximately 86% (CI: [0.8355; 0.8826]). This model 

exhibits strong performance for most species but shows 

lower predictive accuracy for species like Brama 

australis, Genypterus maculatus, Seriolella punctata, 

Strangomera bentincki, and Bovichtus chilensis, 

highlighting areas for potential improvement. 

Conversely, the adapted VGG16 CNN model, as 

depicted in Figure 6, evaluated on the same test set, 

demonstrates superior performance with an accuracy 

rate nearing 95% (CI: [0.9355; 0.9651]). Despite its 

effectiveness, the adapted VGG16 model faces 

challenges in accurately classifying certain species, 

particularly B. australis and S. bentincki, with 33% and 

53% classification rates, respectively, suggesting 

specific targets for future enhancement. 

The performance metrics for the two models are 

provided in Tables 2 and 3. We observed exceptional 

sensitivity in both models for species such as 

Caelorinchus fasciatus and Merluccius gayi gayi, with 

the values reaching 1 and 0.966, respectively, in the 

custom CNN, and 1 for both species in the VGG16 

model. Specificity, indicating the accuracy in 

identifying true negatives, was uniformly high across 

most species, often reaching the maximum of 1. 

Precision and Negative Predictive Value (NPV) 

metrics, assessing the reliability of the classification of 

the models, were generally high. However, a notable 

outlier was the precision for B. australis in the custom 

CNN model, which was marked as NaN due to a lack 

of positive predictions. Balanced accuracy, a vital 

metric in datasets with class imbalances, demonstrated 

the models' consistent accuracy across various classes, 

with many species, such as Thyrsites atun and 

Eleginops maclovinus, achieving scores close to 0.989 

and 0.978 in the custom CNN, and 0.991 and 0.999 in 

the VGG16 model, respectively. 
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Figure 3. Adapted VGG16 Convolutional Neural Network Architecture. ReLU: rectified linear unit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Training performance measures for Convolutional Neural Network (CNN) models, loss and accuracy on the upper 

and lower sides of the figure, respectively. Custom CNN (on the left) and adapted VGG16 CNN (on the right). 
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Figure 5. Confusion matrix for custom Convolutional Neural Network based on the testing subset of images.  

 

 

The heatmap visualization is achieved by 

overlaying the activation map onto the original image, 

providing an intuitive graphical representation of 

model focus. Figure 7 presents Gradient-weighted 

Class Activation Mapping (Grad-CAM) visualization 

of randomly selected images from each species 

included in the study. 

We employed Grad-CAM to visually interpret the 

decision-making process of our CNN. Grad-CAM is a 

widely acknowledged technique that produces visual 

explanations for decisions from many CNN-based 

models, rendering it model-agnostic (Selvaraju et al. 

2017).  

By utilizing the gradients of the target concept, 

which flow into the final convolutional layer, Grad-

CAM generates a coarse localization map that 

highlights the important regions in the image for 

predicting the concept. Specifically, it leverages the 

spatial information preserved in convolutional layers to 

understand which parts of the input image are deemed 

significant by the CNN. 

DISCUSSION 

This work demonstrates the efficacy of deep learning in 

classifying 18 fish species relevant to pelagic and de-

mersal fisheries in the central-south region of Chile. To 

achieve this objective, two CNN models, namely custom 

CNN and adapted VGG16 CNN, were deployed and eval-

uated regarding their general classification performance 

and species-specific identification capabilities. The results 

indicated commendable performance for both  models 
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Figure 6. Confusion matrix for adapted VGG16 Convolutional Neural Network based on the testing subset of images. 

 

 

during the training and testing phases, underscoring the 

effectiveness of CNN-type models in overall fish spe-

cies classification. The adapted VGG16 CNN model 

exhibited significantly superior outcomes to the custom 

CNN model. 

Despite the overall effectiveness of the adapted 

VGG16 model, certain species remain challenging to 

classify accurately. In particular, B. australis exhibits a 

low classification rate (33%), largely because it is often 

misclassified as Thyrsites atun or Stromateus stellatus. 

Determining the precise morphological features 

causing this confusion is difficult due to the limited 

number of B. australis images (30) available for 

training, which restricts the model's ability to learn 

distinctive characteristics for this class. S. bentincki is 

frequently misclassified as E. ringens, reflecting a 

broader issue of morphological similarity among small 

pelagic species that compromises the model's 

discriminative capacity. These findings underscore the 

importance of augmenting datasets with a more 

extensive and diverse range of images, thereby 

providing CNNs with a wider variety of examples to 

learn. Since CNNs rely on multi-level feature 

extraction from pixel data, the availability of richer 

image repositories is crucial for capturing subtle 

interspecies variations and improving classification 

performance across all taxa under investigation 

(Barbedo 2018, Rekha et al. 2020, Yang et al. 2021, 

Alsmadi & Almarashdeh 2022). 

Recent studies have underscored the efficacy of 

technologies like Remote Electronic Monitoring 

(REM) in mitigating bycatch in small-scale fisheries, 

demonstrating how REM can support observer data, 

enhance accuracy, monitor the effectiveness of mitiga-
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Table 2. Class-specific metrics for the custom Convolutional Neural Network model. NPV: Negative Predictive Value. 

 

Species Sensitivity Specificity Precision NPV Prevalence 
Detection 

rate 
Detection 
prevalence 

Balanced 
accuracy 

Apristurus nasutus 0.883 1.000 1.000 0.991 0.069 0.061 0.061 0.942 

Brama australis 0.000 1.000 NaN 0.997 0.003 0.000 0.000 0.500 

Caelorinchus fasciatus 1.000 0.975 0.806 1.000 0.095 0.095 0.118 0.987 

Cilus gilberti 0.951 0.946 0.569 0.996 0.070 0.066 0.117 0.948 

Eleginops maclovinus 0.955 1.000 1.000 0.996 0.077 0.073 0.073 0.978 

Engraulis ringens 0.735 0.992 0.781 0.989 0.039 0.029 0.037 0.863 

Epigonus crassicaudus 0.723 0.993 0.850 0.984 0.054 0.039 0.046 0.858 

Genypterus chilensis 0.909 1.000 1.000 0.999 0.013 0.011 0.011 0.955 

Genypterus maculatus 0.105 1.000 1.000 0.980 0.022 0.002 0.002 0.553 

Merluccius gayi gayi 0.966 0.996 0.903 0.999 0.033 0.032 0.036 0.981 

Paralichthys microps 0.900 0.998 0.947 0.995 0.046 0.041 0.044 0.949 

Scomber japonicus 0.962 0.999 0.962 0.999 0.030 0.029 0.030 0.980 

Seriolella punctata 0.375 0.989 0.571 0.977 0.037 0.014 0.024 0.682 

Strangomera bentincki 0.579 0.992 0.611 0.991 0.022 0.013 0.021 0.785 

Stromateus stellatus 0.838 0.999 0.984 0.985 0.085 0.071 0.072 0.918 

Thyrsites atun 0.980 0.997 0.987 0.996 0.175 0.172 0.174 0.989 

Bovichtus chilensis 0.552 1.000 1.000 0.985 0.033 0.018 0.018 0.776 

Trachurus murphyi 0.953 0.975 0.804 0.995 0.099 0.094 0.117 0.964 

 

Table 3. Class-specific metrics for the adapted VGG16 Convolutional Neural Network model. NPV: Negative Predictive 

Value. 

 

Species Sensitivity Specificity Precision NPV Prevalence 
Detection 

rate 
Detection 
prevalence 

Balanced 
accuracy 

Apristurus nasutus        0.983 1.000 1.000 0.999 0.069 0.068 0.068 0.992 

Brama australis           0.333 1.000 1.000 0.998 0.003 0.001 0.001 0.667 

Caelorinchus fasciatus    1.000 0.996 0.965 1.000 0.095 0.095 0.099 0.998 

Cilus gilberti            0.967 1.000 1.000 0.998 0.070 0.068 0.068 0.984 

Eleginops maclovinus      1.000 0.999 0.985 1.000 0.077 0.077 0.078 0.999 

Engraulis ringens         0.824 0.992 0.800 0.993 0.039 0.032 0.040 0.908 

Epigonus crassicaudus     0.957 1.000 1.000 0.998 0.054 0.052 0.052 0.979 

Genypterus chilensis      0.818 1.000 1.000 0.998 0.013 0.011 0.011 0.909 

Genypterus maculatus      1.000 0.994 0.792 1.000 0.022 0.022 0.027 0.997 

Merluccius gayi gayi      1.000 0.999 0.967 1.000 0.033 0.033 0.034 0.999 

Paralichthys microps      1.000 1.000 1.000 1.000 0.046 0.046 0.046 1.000 

Scomber japonicus         0.731 0.999 0.950 0.992 0.030 0.022 0.023 0.865 

Seriolella punctata       0.969 0.999 0.969 0.999 0.037 0.036 0.037 0.984 

Strangomera bentincki     0.526 0.986 0.455 0.989 0.022 0.012 0.025 0.756 

Stromateus stellatus      0.959 0.999 0.986 0.996 0.085 0.081 0.082 0.979 

Thyrsites atun            0.994 0.989 0.950 0.999 0.175 0.174 0.183 0.991 

Bovichtus chilensis       0.862 1.000 1.000 0.995 0.033 0.029 0.029 0.931 

Trachurus murphyi         0.977 0.997 0.977 0.997 0.099 0.096 0.099 0.987 

 

 

tion technologies, and guarantee enforcement; this 

offers a strategic avenue to oversee and curb illegal 

fishing practices (Worm et al. 2013, Van Helmond et al. 

2015, Bartholomew et al. 2018, Glemare et al. 2020, 

Brown et al. 2021). On that note, advancements in 

technology, particularly in image recognition, are 

progressively enhancing the monitoring capabilities of 

exploitative activities in fisheries. Coupled with 

decreased data storage costs, these advancements 

position electronic monitoring as a cost-effective 

adjunct to fisheries observer programs, promising a 

substantial shift in operational dynamics. 

Barbedo (2022) delineates four pivotal activities in 

fisheries monitoring: recognition (detecting and quan-
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Figure 7. Grad-CAM visualization of randomly selected images from each species included in the study.  

 

 

tifying individuals), measurement (assessing individual 

characteristics like weight, size, sex, etc.), tracking 

(where feasible), and classification (identifying species 

and pertinent features). Traditional reliance on visual 

methods, whether direct or via images/videos, 

encounters challenges including high costs, low 

throughput, subjectivity, and observer biases, 

compromising data reliability (Benoît et al. 2009, 

Cahalan et al. 2016, Snyder & Erbaugh 2020). 

Additionally, imaging devices facilitate data collection 

in hazardous environments, mitigating risks to human 

operators. Furthermore, addressing the knowledge and 

management gaps related to bycatch necessitates a 

multi-faceted approach, starting with precisely 

identifying the fisheries and species affected by bycatch 

(Soykan et al. 2008, Poisson et al. 2022). This 

imperative paves the way for the development of 

targeted technological solutions and research, 

particularly in species identification, such as the case of 

this work. For example, the iObserver device (Vilas et 

al. 2020), specifically designed for fishing vessels, 

automatically captures and processes catch images for 

species identification and quantification. This system 

exemplifies the integration of image processing and 

real-time data analysis, leveraging open-source image 

recognition software for accurate species detection and 

quantification, becoming essential in evolving visual 

tracking systems that autonomously detect, classify, 

and enumerate various fish species based on video 

footage from fishing operations. Such integration and 

recent advancements in computer vision systems 

highlight the growing feasibility of enhancing 

electronic monitoring in fisheries, providing 

comprehensive records of catch and bycatch that 

outstrip the capabilities of manual observers (Khokker 

et al. 2022, Lekunberri et al. 2022, da Silva et al. 2023). 

Noteworthy is the realization that fishing vessel 

conditions are seldom ideal, with each fishery having 

distinct operational procedures and fishing gears of 

varied selectivities. Challenges like variable lighting, 

weather conditions, and the need for extensive, 

annotated datasets necessitate tailored solutions to 

improve system accuracy and reliability. Thus, accurate 

identification of individual fish species becomes 

paramount in environments where multiple species 

coexist and traditional counting methods often fall 

short, yielding unreliable or inconsistent data. The 

CNN-based species classification developed in this 

study is of particular importance as it provides the 

necessary building blocks for implementing integrated 
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systems that further aid in monitoring fisheries, 

highlighting the significance of our research in 

contributing to the broader objectives of sustainable 

fisheries management and ecosystem conservation. In 

this context, effective species classification emerges as 

a critical component for comprehensive surveys and 

monitoring of fisheries activities. Such classification 

aids in detecting non-targeted species, facilitates the 

implementation of effective control measures, and 

contributes to the reduction of bycatch (Siddiqui et al. 

2018, Hridayami et al. 2019, Agarwal et al. 2021). 

Consequently, integrating these considerations with the 

advancements in computer vision and electronic 

monitoring emphasizes the potential for significantly 

enhancing fisheries management's accuracy, efficiency, 

and sustainability. Combining rigorous species 

identification with innovative monitoring technologies, 

this dual approach addresses the complexities and 

challenges inherent in modern fisheries management, 

especially in diverse and dynamic marine ecosystems. 

CNN-based models offer state-of-the-art classifi-

cation accuracy, even when working with limited 

datasets. However, the manual collection and curation 

of large image repositories remain significant 

constraints, underscoring the need for techniques that 

utilize artificially generated training data. Data 

augmentation -employing techniques such as flips, 

rotations, shifts, shearing, and zooming- continues to be 

one of the most accessible and effective strategies for 

increasing dataset diversity and improving generaliza-

tion (Mumuni & Mumuni 2022, Kumar et al. 2024, 

Wang et al. 2024). These conventional methods can 

substantially enhance the robustness of models across 

varied scenarios, particularly in fisheries research, 

where obtaining comprehensive imagery of 

underrepresented species can be challenging (Ben-

Tamou et al. 2022). 

Nevertheless, traditional augmentation approaches 

have inherent limitations, as they do not fully capture 

the complexity of real-world conditions or adequately 

address extreme data imbalances. More advanced 

techniques, such as generative adversarial networks or 

class-specific synthetic image generation, could yield 

higher-quality augmented samples and improve model 

performance (Mumuni & Mumuni 2022, Kuntalp & 

Düzyel 2024). However, implementing these 

sophisticated methods requires specialized, domain-

specific procedures. Given that the current study 

represents an initial effort in this field, extending the 

scope to include such advanced methods was not 

feasible. Future research will focus on integrating these 

more specialized augmentation strategies, particularly 

for underrepresented and visually complex species. 

As stated in the Introduction section, the Chilean 

fisheries administration established the Fisheries 

Observer and Monitoring Program (FOMP), which 

incorporates various tasks aimed at achieving the 

objectives outlined in the new fisheries regulations, 

redirecting its focus towards the research and 

monitoring of discard and bycatch in pelagic purse-

seine and demersal trawling fisheries. In this context, 

the FOMP provides information for developing 

national plans by fishery/fleet to help reduce discards 

of target and non-target species and reduce bycatch of 

birds, mammals, and marine reptiles (turtles). The 

FOMP, with its focus on the conservation and 

management of hydrobiological resources through data 

collection, could directly benefit from this research by 

implementing the proposed models in their sampling 

and data collection processes, thereby helping to 

identify different species better and build datasets for 

the recursive improvement of the implemented models. 

In wildlife sciences, emerging methods for data 

collection are constantly being developed (e.g. 

unoccupied aircraft systems, camera tags, and satellite 

imagery). In the fisheries science framework, the latter 

poses challenges in overcoming the constantly 

generated flood of information and properly analyzing 

the data to generate knowledge. To address this issue, 

there is a growing investment in using artificial 

intelligence (AI) for automated image data processing. 

Angliss et al. (2020) outline five key stages of 

implementing an AI project: scoping, data preparation 

and annotation, model selection, training, testing, 

model evaluation and re-training, deployment, and 

integration. In that sense, future work aims to build 

upon the good results of this article, integrating them 

into a broader framework that leverages computer 

vision to recognize onboard fish, quantify catches, and 

detect suspicious activities such as discards and 

bycatch. This comprehensive approach can greatly 

benefit Fisheries Observer programs, by integrating this 

automated species classification model into a broader 

framework that uses computer vision and segmentation 

techniques for the identification of multiple fish 

species, automatic measurement of lengths and 

weights, among other direct applications, thus 

enhancing compliance and contributing to the 

sustainable management of Chilean fisheries and 

broader ecosystems. 

Through an examination of the dynamic and 

transdisciplinary facets of the issue, deep learning 

methods could be further integrated into more intricate 

management models, employing automated fish 

recognition through computer vision systems. Thus, 

this approach must recognize the interconnectedness of 
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ecological and human dimensions in the context of 

bycatch, deviating from conventional methodologies 

and extending beyond immediate benefits for fisheries 

management. Its potential in accurate bycatch 

estimation establishes a cornerstone for sustainable 

practices. This investment in advanced technologies 

addresses the current complexities of global bycatch. It 

lays the groundwork for future mitigation efforts, 

highlighting the transformative power of integrating 

deep learning and computer vision in marine 

conservation and fisheries management. 
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