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ABSTRACT. Shrimp farming is evolving towards intensification to enhance productivity and optimize resource 

usage. The growth of this sector is closely linked to the availability of high-quality postlarvae and juveniles. 

Intensive nurseries in two-phase systems play a crucial role in improving survival and growth rates during the 

grow out phase. However, this approach necessitates skilled labor and feeds with high crude protein content, 

which are expensive and potentially risky to water quality, and therefore to animal health. Therefore, it is 

essential to develop strategies that improve this farming system. The objective of this study was to evaluate the 

effect of replacing commercial feed with different levels of fermented soybean meal (FSB; 0, 25, 50, 75, and 

100%) using a commercial probiotic composed of a mixture of microorganisms during the culture of Penaeus 

vannamei postlarvae in an intensive nursery. The water quality, zooplankton density, and standard bacterial plate 

count of Vibrio spp. in water culture were evaluated. Daily weight gain, average final weight, and final 

productivity were affected by the 75% replacement. Shrimp fed with up to 50% replacement exhibited superior 

growth. Survival was not impacted by the replacement levels, remaining above 79%. Total zooplankton density 

was higher in the FSB 25% treatment (P < 0.05). The Vibrio spp. standard plate count was influenced by the 

different replacement levels, with 50% replacement reaching the highest levels (P < 0.05). Results showed that 

FSB can replace up to 50% of commercial feed for postlarvae during intensive nursery, maintaining growth rates 

similar to those achieved with commercial feed protocols. 
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INTRODUCTION 

The adoption of intensive systems enables productivity 

gains through the use of high stocking densities. In 

these systems, higher levels of technology are 

observed, including more efficient and modern aeration 

mechanisms, advanced water quality control technolo-

gies, and high-quality commercial feeds with substan-

tial  inclusion  of  fishmeal  and  high  protein content 
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Associate Editor: Fernando Vega-Villasante 

(Tierney et al. 2020, Wasielesky et al. 2020, Nunes et 

al. 2021). High productivity in aquaculture can be 

achieved; however, it also comes with an increased risk 

of mortality. This risk is often associated with high 

population densities and the use of high feeding rates, 

which can lead to the accumulation of organic matter, 

thereby enabling the development of bacterial diseases, 

such as vibriosis (Zokaeifar et al. 2012). Additionally, 

operating these systems typically incurs higher costs  

 

 

https://orcid.org/0000-0001-6765-690X
https://orcid.org/0000-0003-3381-3975
https://orcid.org/0000-0002-4834-4377
https://orcid.org/0000-0001-5199-1754
https://orcid.org/0000-0002-3779-5092


2                                                             Latin American Journal of Aquatic Research 
 

 

 

due to the need for value-added inputs, such as 

probiotics and formulated feeds, as well as aeration 

systems, among other factors (Browdy et al. 2016, 

Peixoto et al. 2017, Supriyono et al. 2021). Fermented 

vegetable bran can be utilized as a strategy to mitigate 

production costs while simultaneously improving the 

cultivation environment. This approach enables a 

reduction in costs through the total or partial 

replacement of commercially formulated feeds in the 

feeding of cultivated organisms, as well as stimulating 

the production of zooplankton, such as copepods and 

rotifers, which serve as supplementary food sources, 

thereby reducing feed conversion (Romano 2017). 

Additionally, fermentation using probiotic organisms 

facilitates their dissemination in the cultivation 

environment, thereby positively impacting the system's 

ecology and leading to improved control over both 

water and sediment quality (Dauda et al. 2017, Romano 

et al. 2018, Albuquerque 2019, Leite et al. 2020). 

The use of fermented vegetable brans, especially 

soybean meal, has been investigated in marine shrimp 

farming across both semi-intensive and intensive 

systems (Abd El-Naby et al. 2024). Its applications 

include serving as a fertilizer for natural food 

production and water quality control through probiotic 

dissemination and C/N ratio management, as well as its 

inclusion in animal nutrition (Shiu et al. 2015, Dossou 

et al. 2018, Van Nguyen et al. 2018, Albuquerque 2019, 

Leite et al. 2020). Research has demonstrated the 

effectiveness of fermented soybean meal (FSB) as a 

primary protein source in formulated diets for Penaeus 

vannamei postlarvae (PL) in intensive nurseries. Its use 

can positively impact weight gain and productivity, 

while also enhancing both the immunological and 

health status of farmed animals, potentially accelerating 

their reaction to pathogens, such as bacteria from genus 

Vibrio (Wang et al. 2016, Guo et al. 2018, Van Nguyen 

et al. 2018, Galkanda-Arachchige & Davis 2020). 

Additionally, this strategy enables feed cost reduction, 

given the lower price of this vegetable input. 

Fermenting soybean meal with probiotic organisms 

enhances its nutritional properties and reduces 

antinutritional factors (Xue et al. 2024). The 

substitution of fishmeal with FSB in formulated feeds 

has been extensively studied, with numerous studies 

confirming its efficiency as a primary protein source, 

even in intensive systems (Supriyati et al. 2015, Shiu et 

al. 2015, Sharawy et al. 2016).  

Although scientific literature encompasses research 

on the development and evaluation of strategies for 

using soybean meal in shrimp nutrition, the vast 

majority of studies focus on its use as an ingredient in 

formulated feeds (Zhou et al. 2015). However, more 

recently, the use of this ingredient as a direct feed 

source for farmed shrimp has been explored. 

Fermentation of these ingredients by probiotic 

microorganisms, such as Lactobacillus and Bacillus, 

promotes the degradation of antinutritional compounds 

and the production of beneficial metabolites, such as 

organic acids, digestive enzymes and bioactive 

peptides, which improve nutrient digestibility, 

intestinal health and water quality (Zhao et al. 2020, Li 

et al. 2021). Studies have demonstrated the positive 

effects of incorporating fermented ingredients into 

shrimp diets, leading to enhanced growth, improved 

immune response, and increased microbial stability in 

the culture environment (Yang et al. 2020). However, 

challenges such as standardizing final product quality, 

production costs, and possible environmental impacts 

still require further investigation (Zhang et al. 2019). 

According to Albuquerque (2019) using the 

fermentation process with the commercial probiotic 

BM-PRO™ increased the crude protein, total 

carbohydrate, and lipid content of FSB, including its 

use as an exclusive food source during the entire 

growout phase for the marine shrimp P. vannamei, 

providing performance results similar to those obtained 

with commercially formulated feed. However, there 

remains a lack of evaluation of FSB as an exclusive 

nutritional element for postlarvae during the intensive 

nursery phase. 

MATERIALS AND METHODS 

Experimental design 

The study lasted 23 days and was conducted at the 

Aquacultura Fortaleza S.A. (AquaFort) farm, located 

on the Coreaú River between the municipalities of 

Camocim and Granja, in Ceará State, Brazil. The trial 

was conducted in circular tanks with a bottom area of 

385 m², a water column of 1.3 m, and a useful volume 

of 500 m³ each. PL were stocked at an average initial 

weight of 0.003 ± 0.001 g (BK-2000, GEHAKA, São 

Paulo, Brazil) at a density of 9,000 PL m-3.  

The trial employed a completely randomized 

experimental design with five treatments, each using 

FSB at varying concentrations (0, 25, 50, 75, and 

100%) in triplicate. These treatments represented the 

replacement levels (%) of commercial feed with FSB in 

the feeding protocol. The control was represented by 

the absence of FSB (FSB0%); only commercial feed is 

offered. During the trial, PL were fed a combination of 

three commercial diets with different grain sizes, each 

suited to the corresponding PL stage (Table 2). Food 
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was offered 12 times a day, at 2-h intervals between 

each feeding (Table 3). 

Raising conditions 

The tanks were supplied with previously filtered water 

(salinity at 46) and provided with supplementary 

aeration through a diffused air system, using flexible 

microperforated hoses placed at the bottom of each 

tank. A 7.5 HP air blower powered each tank's aeration. 

Initially, the tanks were fertilized with 50 g m-3 of 

fermented rice bran (FRB) and 0.5 g m-3 of the 

commercial probiotic BM-PROTM (Biotrends Soluções 

Biotecnológicas, Eusébio, CE, Brazil) for three 

consecutive days before stocking. Throughout the 

experimental period, daily applications of FRB (10 g m-3) 

were added directly to the water. After the third day of 

the experiment, partial water exchanges (approximately 

5% of the total volume) were performed to prevent 

nitrogen peaks and the accumulation of organic matter. 

Water replacements with filtered water were carried out 

to maintain the system's water level and salinity. 

Vegetable bran fermentation with probiotic 

The fermentation processes for soybean and rice bran 

used in the feeding and fertilization protocols, 

respectively, were carried out using BM-PROTM 

(Biotrends Biotech Solutions, Eusébio, CE, Brazil), 

according to the manufacturer's recommendations and 

based on previous studies conducted by the company. 

The choice of this commercial probiotic was based on 

the fermenting microorganisms, such as bacteria and 

yeast, present in its composition (Table 1). The 

application of fermented rice bran is a strategy aimed at 

creating conditions like the natural environment, with 

the goal of controlling water quality (Pimentel et al. 

2025a).  

Fermentation of rice bran 

Rice bran fermentation was performed following the 

protocol for a 250 L total volume culture. Two hundred 

fifty grams of BM-PRO™ were hydrated in 10 L of 

water for 4 h. After activation, the microbial culture 

was inoculated into a previously prepared mixture 

consisting of 25 kg of rice bran, 213 L of water with 

salinity at 46, and 1.75 kg of sodium bicarbonate 

(NaHCO3). The culture underwent fermentation for 40 

h before being applied to the culture tanks. In all 

experimental units, the application of FRB was 

performed according to the following protocol: three 

doses of 50 g m-³ of bran were administered for three 

days, before population, in conjunction with three doses 

of 250 g of the commercial probiotic used in the bran 

fermentation process. 

Fermentation of soybean bran 

Soybean bran fermentation was performed using the 

following method for a total of 100 kg of soybean bran. 

Five hundred grams of BM-PROTM were hydrated in 25 

L of water salinity (46) for 4 h. After microbial 

activation, 75 L of water was added, and the mixture 

was homogenized, totaling 100 L of culture. This 

culture was then gradually inoculated into 100 kg of 

soybean bran. This homogeneous mixture remained in 

the fermentation process for 48 h, covered and 

protected from the sunlight. The production of 

fermented soybean bran was carried out according to 

daily feed demand.   

Water quality monitoring 

Water quality parameters were recorded twice daily 

(07:00 and 17:00 h), except for alkalinity, which was 

measured once a day at 07:00 h. Dissolved oxygen and 

temperature were recorded using a probe (Instrutherm, 

MO900, Brazil); pH was measured with a portable pH 

meter (Akso, model AK90, Brazil); and salinity was 

measured with a probe (Akso, AR8012, Brazil). 

Ammonia, nitrite, and alkalinity levels were 

determined using a colorimetric test with a photometer 

reading (YSI, EcoSense 9500, USA). 

Zooplankton density analysis  

A volume of 20 L of water was collected daily from 

each experimental unit. After homogenization, three 1 

mL aliquots were taken from each sample, fixed in a 

4% formalin solution, and analyzed under an optical 

microscope (Olympus, CX21, Japan) at 4× magnifica-

tion using a Sedgewick-Rafter chamber (Utermöhl 

1958). The densities of copepods and rotifers were then 

determined based on zooplankton counts. 

Vibrio spp. monitoring 

Water samples were collected daily using sterilized 50 

mL Falcon tubes. A two-fold serial dilution (10-1 and 

10-2) was performed by suspending 1 mL of each 

sample in 9 mL of 2.5% (m/v) saline solution. After 

this, 0.1 mL aliquots of the 10-1 dilution were taken and 

evenly spread on plates containing thiosulfate-citrate-

bile-sucrose agar (TCBS), using a Drigalsky loop, 

following the Spread Plate technique. The plates were 

incubated upside down at 35°C for 24 h. Bacterial 

colonies were then counted using the Standard Plate 

Count (SPC) method (Downes & Ito 2001), and results 

were expressed as colony-forming units per milliliter 

(CFU mL-1). 
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Table 1. Biological composition of the BM-PROTM commercial probiotic. Source: Biotrends Biological Solutions. CFU: 

colony-forming units.  

 

Species Concentration (CFU kg-1) 

Bacillus subtilis 4.0×1011 

Bacillus licheniformis 4.0×1011 

Bacillus pumilus 4.0×1011 

Lactobacillus plantarum 2.0×1011 

Lactobacillus acidophilus 1.0×1011 

Saccharomyces cerevisiae 4.0×1011 

Total microorganism counting 1.9×1012 

 

Table 2. Composition of different commercial feeds indicated for each post-larval stage of the marine shrimp P. vannamei 

under intensive nursery. 1Bern Aqua NV, Olen, Belgium, 2Epicore BioNetworks Inc., Eastampton, NJ, USA, 3Zeigler Bros 

Inc., Garners, PA., USA. NI: not informed. 
 

Commercial feed MeM¹ Epibal² 
PL Raceway 

40-9³ 
PL Raceway 

40-9³ 

Granulometry (µm) 200-300 300 400-600 600-850 

  Warranty levels  
Crude protein (%) 60.0 49.0 40.0 40.0 

Lipids (%) 15.0 14.0 9.0 9.0 

Ashes (%) 14.5 12.0 3.0 3.0 

Maximum humidity (%) 8.0 10.0 10.0 10.0 

Fibers (%) 1.7 4.0 13.0 13.0 

Phosphorus (%) 2.3 NI 1.1 1.1 

 

 

Growth performance 

At the end of the experiment, the following 

performance parameters of the shrimp were evaluated:  

Survival rate (SR, %): (final number of PL / initial 

number of PL) × 100; 

Final weight (FW, g): total weight of PL sampled / 

total number of PL sampled; 

Yield (kg m-3): final biomass (kg) / volume (m3); 

Daily weight gain (DWG, g d-1): (final average 

weight – initial average weight)/reared days;  

Specific growth rate (SGR, % d-1): [(ln FW - ln IW)/ 

experimental time (d)]× 100; and  

Feed conversion factor (FCR): feed offered (kg) / 

biomass gain (kg). 

Statistical analysis 

The data obtained in the study were evaluated for 

normality using the Shapiro-Wilk test and for 

homoscedasticity using Levene's test. A one-way 

ANOVA followed by Tukey's post-hoc test was used to 

compare the means. The tests were performed 

according to Zar (2010), with a significance level of 5% 

(P < 0.05). 

RESULTS 

Microbiological evaluation of the soybean meal 

fermentation process 

The growth of microbial communities during the 

fermentation of soybean meal, utilizing the 

microorganisms and nutrients of the probiotic BM-

PRO® is shown (Fig. 1). Lactobacillus spp. and yeasts 

grew during the fermentation process of soybean meal 

with the probiotic, increasing from a logarithmic scale 

of 106 to 109 CFU g-1 and from 106 to 108 CFU g-1, 

respectively, within the first 24 h. Total heterotrophs 

(Bacillus spp.) remained viable and metabolically 

active at the logarithmic scale of 106 CFU g-1. The 

exponential growth of Lactobacillus spp. was 

accompanied by a gradual decrease in the pH of the 

soybean meal, indicating stability from the sixth day 

onward. The pH values during the fermentation of 

soybean meal are shown (Fig. 2). 
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Table 3. Feeding rate (%) based on the estimated weight (g) of Penaeus vannamei postlarvae (PL) reared in the nursery 

phase under commercial conditions. 1Bern Aqua NV, Olen, Belgium, 2Epicore BioNetworks Inc., Eastampton, NJ, USA, 
3Zeigler Bros Inc., Garners, PA, USA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Water quality 

The results of the physical and chemical parameters 

evaluated throughout the experimental period are 

shown in Table 4. No significant variations in pH (P > 

0.05) were observed between treatments. Oxygen 

levels in FSB0% were higher (P < 0.05) and remained 

above 7 mg L-1. Meanwhile, the temperature remained 

above 30ºC in all treatments, being higher in 

FSBJ100% (P < 0.05) at both measurement times. 

Ammonia levels remained above 1 mg L-1 in all 

treatments; however, the lowest ammonia concentra-

tion (P < 0.05) occurred with a higher level of feed 

replacement by FSB (FSB100%). Alkalinity levels 

remained above 150 mg L-1 of CaCO3 in all treatments, 

with the highest levels in FSB100% (P < 0.05). This 

same behavior was also observed for nitrite in 

FSB100% (P < 0.05). 

 

Zooplankton density 

The results of the average density of zooplankton 

groups are shown in Figure 3. The different concentra-

tions of FSB influenced both copepod density (Fig. 3a) 

and total zooplankton (Fig. 3c), with FSB25% leading 

to a significant concentration of these organisms (P < 

0.05). In contrast, rotifer density (Fig. 3b) was not 

significantly affected by the treatments (P > 0.05). 

Vibrio spp. monitoring 

Results for standard plate counts of Vibrio spp. in the 

culture water of P. vannamei postlarvae are shown (Fig. 

4). The treatments influenced the SPC, with FSB50% 

presenting the highest concentration of Vibrio (2,265 

CFU mL-1). 

 

Rearing 

days 

Weight 

(mg) 

Feeding 

rate (%) 

Commercial feed (%) 

MeM¹ Epibal² 
PL Raceway 

40-9³ 

PL Raceway 

40-9³ 

200-300 300 400-600 600-850 

1 0 35 100 - - - 

2 0 34 100 - - - 

3 0 33 100 - - - 

4 0.01 32 100 - - - 

5 0.01 31 10 90 - - 

6 0.01 30 40 60 - - 

7 0.01 29 30 50 20 - 

8 0.01 28 - 60 40 - 

9 0.01 27 - 60 40 - 

10 0.02 26 - 30 40 30 

11 0.03 25 - 30 40 30 

12 0.04 24 - 30 40 30 

13 0.04 23 - 30 40 30 

14 0.05 22 - - 50 50 

15 0.06 21 - - 50 50 

16 0.08 20 - - 50 50 

17 0.10 19 - - 50 50 

18 0.11 18 - - 50 50 

19 0.13 17 - - 50 50 

20 0.13 16 - - 50 50 

21 0.14 15 - - 50 50 

22 0.17 14 - - 50 50 

23 0.14 13 - - - 100 
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Figure 1. Growth of microbial communities of the probiotic BM-PROTM during the soybean meal fermentation process. 

CFU: colonies forming units; h: hours; d: days. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Evaluation of pH values during fermentation of soybean meal with BM-PROTM probiotic. 

 

 

Growth performance 

Overall, the varying concentrations of FSB replacing 

commercial feed influenced FW, DWG, and productiv-

ity (P < 0.05), but they did not affect survival, SGR, 

and FCR (P > 0.05) as shown in Table 5. The PL fed 

with up to 50% replacement of commercial feed with 

FSB showed superior performance compared to the PL 

fed with 100% replacement (P < 0.05).  

DISCUSSION 

The exponential growth of Lactobacillus spp. is 

accompanied by the production of organic acids, 

mainly lactic acid, which gradually lowers the pH of the 

soybean meal from an initial value of 6.5 to 5.0. Under 

specific fermentation conditions and depending on the 

scale, the pH can decrease further to as low as 4.5 

(Santos et al. 2019). In our study, the high 

morphological similarity of microorganism colonies 

contained in commercial probiotics (Bacillus 

licheniformis, B. pumilus, B. subtilius, Lactobacillus 

acidophilus, L. planctarum, Lactobacillus spp., and 

Saccharomyces cervisiae), during the soybean 

fermentation process, associated with significant 

microbial growth, demonstrated the predominance of 

probiotic microorganisms. 
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Table 4. Physical and chemical parameters of the water used to cultivate Penaeus vannamei postlarvae fed at different 

levels of replacement of commercial feed with fermented soybean meal (FSB) during the intensive nursery phase under 

commercial conditions. DO: dissolved oxygen, T: temperature, NO2: nitrite, TAN: total ammonia nitrogen. Values for trip-

licate groups are presented as mean ± standard deviation; different superscript letters between lines indicate significant 

differences (Tukey test; P < 0.05).  

 

Treatment pH 
DO 

(mg L-1) 
T 

(ºC) 
NO2  

(mg L-1) 
TAN 

(mg L-1) 
Alcalinity 

(mg L-1 de CaCO3) 

FSB 0% 7.87 ± 0.18 7.87 ± 0.18a 31.03 ± 0.39abc 0.01 ± 0.01a 2.63 ± 1.09b 160.62 ± 20.96a 

FSB 25% 7.93 ± 0.14 4.82 ± 0.24b 31.14 ± 0.44ac 0.00 ± 0.00a 4.15 ± 1.42c 150.11 ± 25.01a 

FSB 50% 7.82 ± 0.20 5.28 ± 0.36c 30.72 ± 0.57b 0.08 ± 0.13b 3.37 ± 1.24bc 161.77 ± 22.55a 

FSB 75% 7.87 ± 0.24 5.44 ± 0.36c 30.87 ± 0.36ab 0.05 ± 0.03ab 3.49 ± 1.27bc   162.4 ± 34.14a 

FSB 100% 7.98 ± 0.22 6.35 ± 0.45d 31.40 ± 0.60c 0.10 ± 0.11b 1.37 ± 1.21a 187.83 ± 38.63b 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Density of microorganisms in the culture water of Penaeus vannamei postlarvae in intensive nurseries on a 

commercial scale: a) total zooplankton, b) copepods, and c) rotifers. The presence of different superscript indices between 

lines indicates a statistically significant difference between treatments (P < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Standard Plate Count for Vibrio spp. in the 

culture water of Penaeus vannamei postlarvae in a nursery 

on a commercial scale. CFU: colonies forming units. 

 

Heat was generated during the fermentation of plant 

materials (an exothermic reaction), and enzymes 

responsible for material hydrolysis were produced 

(Taherzadeh & Karimi 2007). Hydrolysates exhibit 

superior digestibility, making nutrients more readily 

assimilable for aquatic organisms (De Schrijver & 

Ollevier 2023). Plant material hydrolyzed through 

fermentation optimizes the cycling process in the 

environment by being more easily available to 

environmental microbial cascades, resulting in a 

reduced impact on the physical-chemical quality of 

both water and soil in production systems (Jiang et al. 

2024). High stocking densities are adopted during this 

phase, necessitating high feeding rates, which can reach 

35% of the biomass at the beginning of the rearing 

phase. Furthermore, due to the nutritional requirements 

of shrimp during the postlarval stage, protein-rich feeds 

are often used, with up to 50% crude protein (Braga et 
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Table 5. Growth parameters of Penaeus vannamei postlarvae fed with different levels of replacement of commercial feed 

with fermented soybean meal (FSB). SR: survival rate, IW: initial weight, FW: final weight, DWG: daily weight gain, SGR: 

specific growth rate, FCR: food conversion rate. The values of the groups in triplicate are presented as mean ± standard 

deviation; different superscript letters between lines indicate significant differences (Tukey test, P < 0.05).  

 

Treatment SR (%) IW(g) FW(g) 
Yield DWG SGR 

FCR 
(kg m-³) (g d-1) (%) 

FSB0% 79.62 ± 10.46 0.003 ± 0.000 0.16 ± 0.02a 1.13 ± 0.30a 0.007 ± 0.001a 17.29 ± 0.76 0.71 ± 0.27 

FSB25% 82.18 ± 8.58 0.002 ± 0.001 0.12 ± 0.02ab 0.72 ± 0.16ab 0.004 ± 0.001ab 16.32 ± 1.08 0.91 ± 0.22 

FSB50% 81.28 ± 27.30 0.003 ± 0.002 0.12 ± 0.03ab 0.84 ± 0.16ab 0.005 ± 0.001ab 16.07 ± 1.34 1.36 ± 1.06 

FSB75% 81.16 ± 5.32 0.002 ± 0.000 0.09 ± 0.03bc 0.66 ± 0.32ab 0.004 ± 0.001bc 15.65 ± 1.43 1.48 ± 0.17 

FSB100% 78.94 ± 2.27 0.002 ± 0.000 0.05 ± 0.02c 0.39 ± 0.21b 0.002 ± 0.001c 13.60 ± 2.15 1.56 ± 0.57 

 

 

al. 2023), resulting in high levels of nitrogen, which is 

generally converted into ammonia and nitrite, which 

harms animal development and can become an 

environmental problem. (Correia et al. 2014, Schveitzer 

et al. 2017, Panigrahi et al. 2020). In our study, the 

water quality parameters remained within the ideal 

range for the species (Han et al. 2018, Maicá et al. 2018, 

Valencia-Castañeda et al. 2018, Duan et al. 2019, Ulaje 

et al. 2020), corroborating the findings of Albuquerque 

(2019), who did not observe significant differences in 

water quality when using FRB with BM-PRO® for 

water quality control and fertilization management of 

soil ponds during the grow out phase of P. vannamei 

PL fed exclusively on diets composed of fermented 

vegetable bran. Leite et al. (2020) describes similar 

positive effects on water quality when using rice 

byproducts, such as fermented bran. This result is 

linked to the use of fermented vegetable bran and its 

positive impact on environmental balance. However, in 

our study, total ammonia concentrations remained 

above the ideal range (Cobo et al. 2012, Kathyayani et 

al. 2019). Despite using FRB with the commercial 

probiotic BM-PROTM, combined with direct applica-

tion of the same product and regular partial water 

changes, it was not possible to eliminate ammonia from 

the system. 

In intensive systems, ammonia is produced through 

animal excretion and the mineralization of feces and 

uneaten food (Lin & Chen 2001). In high 

concentrations, ammonia can impair shrimp growth, 

alter the frequency of ecdysis, and affect the 

physiological state of the gills and hepatopancreas, as 

well as the osmoregulatory capacity (Wu et al. 2023). 

However, our study did not demonstrate a harmful 

effect on post-larvae, as the FSB25% and FSB50% 

treatments yielded the best growth responses, despite 

ammonia concentrations exceeding 2 mg L-1 through-

out the trial, compared to the FSB100% treatment. 

These results could likely be enhanced if ammonia 

levels throughout the trial were kept below 1 mg L-1. 

The addition of FRB is a strategy to aid in controlling 

nitrogen (Emerenciano et al. 2013, Martins et al. 2020). 

These findings support those of Maicá (2015), who 

observed no negative effects on the SGR, food 

consumption, and weight gain of P. vannamei at 

ammonia concentrations up to 4 mg L-1. The maximum 

safe concentration for rearing P. vannamei has been 

established at 3.95 mg L-1 of total ammonia (Lin & 

Chen 2001), which accounts for the lack of negative 

effects on shrimp growth at the concentrations observed 

in our study. Leite et al. 2020, when evaluating the 

effect of fertilizers formulated with different 

compositions of bran and other fermented vegetable 

byproducts on the rearing parameters of P. vannamei 

juveniles, reported average total ammonia nitrogen 

levels of 0.06 ± 0.03 mg L-1. The same author, while 

experimenting with different proportions of 

commercial feed replaced by fermented vegetable bran 

in the diet of Pacific white shrimp juveniles, reported 

average total ammonia levels ranging from 0.03 ± 0.02 

at the start of the experiment to 0.14 ± 0.07 mg L-1 at its 

conclusion. Sharawy et al. (2016) observed ammonia 

concentrations between 0.08 and 0.12 ± 0.26 mg L-1 in 

their study on the partial and complete replacement of 

fishmeal with FSB by Saccharomyces cerevisiae in 

diets for PL of the penaeid shrimp Fenneropenaeus 

indicus. 

The absence of feed led to a lower average 

concentration of total ammonia in FSB100%. However, 

the postlarva fed 100% FSB had their growth limited 

by the absence of nutritionally complete food, 

demonstrating that a feeding program based solely on  
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FSB supply is insufficient to sustain shrimp growth at 

this stage. However, fermentation, as a method to 

enhance the nutritional value of vegetable meals, has 

been widely described in the scientific literature (Siddik 

et al. 2024). This process is capable of bringing 

improvements in the centesimal composition of these 

vegetable inputs, improving both the nutrients 

proportion and bioavailability, in addition to treating 

antinutritional factors such as trypsin inhibitors, phytate 

saponin, tannin and glycine (Wang et al. 2016, 

Jannathulla et al. 2018, Romano et al. 2018, 

Albuquerque 2019). The fermentative action can 

increase the protein and concentrations of both essential 

and non-essential amino acids in vegetable brans 

(Hassaan et al. 2015, Sharawy et al. 2016, Razak et al. 

2017, Ribeiro 2018). The fermentation process of 

vegetable brands, such as soybeans, wheat, and rice, 

with the probiotic BM-PRO™ improved both protein, 

lipid, and total carbohydrate levels in the plant material 

used in P. vannamei growout (Ribeiro 2018, 

Albuquerque 2019). The increase in protein content 

was also observed in the fermentation of rice bran used 

as fertilizer during the breeding of Clarias gariepinus, 

resulting in subsequent benefits to the centesimal 

muscle composition, including increased protein and 

lipid levels (Romano et al. 2018). Studies have 

demonstrated the various health benefits of feeding 

aquatic animals diets formulated based on vegetable 

bran fermented with probiotic bacteria (Ray et al. 2010, 

Jamali et al. 2015). Reports indicate the positive 

influence of fermented vegetable bran on the intestinal 

bacterial community, highlighting an increase in lactic 

acid bacteria, which play a crucial role in regulating the 

intestine and inhibiting pathogens in the gastrointesti-

nal tract of aquatic organisms (Harzallah & Belhadj 

2013, Catalán et al. 2018). Soybean bran fermented by 

the bacterium Bacillus subtilis E20 was capable of 

producing antimicrobial peptides with the ability to 

combat pathogenic bacteria, such as species from the 

genus Vibrio (Cheng et al. 2017, Cheng & Chen 2020). 

The use of plant bran in water fertilization can benefit 

aquatic organisms by maintaining water quality and 

promoting the growth of zooplankton, which serve as a 

food source, similar to the aquamimicry technique 

(Khanjani et al. 2022). Fermented bran can potentially 

serve as a direct food source for zooplankton, inducing 

blooms of live food in nurseries and rearing tanks 

(Vilani et al. 2016, Dauda et al. 2017, Kumar et al. 

2017, Romano et al. 2018). 

The densities of total zooplankton and copepods 

decreased with the increased inclusion of FSB to the 

detriment of commercial feed, demonstrating a possible 

compensation mechanism. High rates of commercial 

feed replacement with fermented grain-based pellets 

lead to greater consumption of natural food, which is 

due to the inability of fermented bran to meet all the 

nutritional requirements of farmed shrimp (Sharawy et 

al. 2016, Leite et al. 2020). In addition to food 

management, stocking density can have an effect on the 

zooplankton abundance during the nursery phase of P. 

vannamei. There is a tendency for zooplankton 

abundance to decrease as higher postlarvae stocking 

densities are adopted (Santos 2018). The presence of 

natural food (zooplankton) reduces the demand for 

artificial feeding, thereby decreasing production costs 

and promoting animal health. Rotifers have interesting 

nutritional characteristics; their dry biomass can 

contain 25 to 63% protein and 6 to 36% lipids, and these 

proteins have high digestibility, ranging from 84 to 

95% (Watanabe & Kiron 1994, Maia et al. 2003, Demir 

& Dicken 2011, Jeeja et al. 2011). 

Furthermore, rotifers are tolerant to a wide range of 

salinity levels, have a low mortality rate and rapid 

reproduction, which makes them an adequate 

complementary food source for marine shrimp 

(Lubzens 1987, 2001, Demir & Diken 2011, Jeeja et al. 

2011, Rahman et al. 2018, Das et al. 2021). Copepods, 

in turn, are rich in protein, fatty acids, antioxidant 

pigments, vitamins, and LC-PUFA, including eicosa-

pentaenoic, docosahexaenoic, and arachidonic acids, 

which are essential for growth and development (Drillet 

et al. 2006, Khanjani et al. 2022). It is common for 

rotifers, nematodes, and copepods to be the 

predominant taxa in zooplankton communities found in 

aquaculture (Marinho et al. 2014, Santos 2018, Santos 

et al. 2020). In our study, copepods predominated, 

especially in the FSB0% and FSB25% treatments, 

indicating that the gradual increase in the replacement 

of artificial food with FSB favored the selective 

consumption of natural food. Copepods are 

nutritionally richer than rotifers, which could explain 

the negative pressure exerted on FSB75% and 

FSB100%, probably to compensate for the absence of 

more complete nutritional sources, such as commercial 

feed. In general, P. vannamei PL showed greater weight 

gain when rotifers, copepods, and Artemia nauplii were 

added to the culture during the nursery (Andrade et al. 

2021, Abbaszadeh et al. 2022). Treatments with lower 

FSB replacement showed higher densities of copepods 

and rotifers. The use of organic carbon sources such as 

FRB as a fertilization strategy in P. vannamei culture is 

capable of modulating the zooplankton community. 

Although it stimulates the development of phyla such 

as Rotifera and Copepoda, protozoa are its primary 
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beneficiaries, becoming the most abundant group (Leite 

et al. 2020, Xavier et al. 2022, Pimentel et al. 2023, 

2025b). 

Additionally, plant-based meals have a lower 

capacity to meet the nutritional requirements of farmed 

shrimp (Sharawy et al. 2016, Leite et al. 2022). As a 

result, the animals rely more on natural food as a 

nutritional supplement, highlighting the importance of 

a healthy planktonic community to promote better 

development of the cultured animals under conditions 

of feed replacement or restriction of balanced feed use 

(Van et al. 2017, Chakravarty et al. 2018, Andrade et 

al. 2021, Khanjani et al. 2023, Gonçalves-Júnior et al. 

2025). Our findings show that the development of the 

zooplankton community, following fertilization with 

rice bran, supports the growth of postlarvae while 

allowing for the replacement of up to 50% of the feed 

with FSB. Our results demonstrate that it is possible to 

replace commercial feed with FSB by up to 50% during 

the rearing of P. vannamei PL. 
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